1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

use std;
use std::{io, mem};
use std::ptr;

use buffer::{ReadBuffer, WriteBuffer, BufferResult};
use buffer::BufferResult::{BufferUnderflow, BufferOverflow};
use symmetriccipher::{SynchronousStreamCipher, SymmetricCipherError};

/// Write a u64 into a vector, which must be 8 bytes long. The value is written in big-endian
/// format.
pub fn write_u64_be(dst: &mut[u8], mut input: u64) {
    assert!(dst.len() == 8);
    input = input.to_be();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 8);
    }
}

/// Write a u64 into a vector, which must be 8 bytes long. The value is written in little-endian
/// format.
pub fn write_u64_le(dst: &mut[u8], mut input: u64) {
    assert!(dst.len() == 8);
    input = input.to_le();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 8);
    }
}

/// Write a vector of u64s into a vector of bytes. The values are written in little-endian format.
pub fn write_u64v_le(dst: &mut[u8], input: &[u64]) {
    assert!(dst.len() == 8 * input.len());
    unsafe {
        let mut x: *mut u8 = dst.get_unchecked_mut(0);
        let mut y: *const u64 = input.get_unchecked(0);
        for _ in 0..input.len() {
            let tmp = (*y).to_le();
            ptr::copy_nonoverlapping(&tmp as *const _ as *const u8, x, 8);
            x = x.offset(8);
            y = y.offset(1);
        }
    }
}

/// Write a u32 into a vector, which must be 4 bytes long. The value is written in big-endian
/// format.
pub fn write_u32_be(dst: &mut [u8], mut input: u32) {
    assert!(dst.len() == 4);
    input = input.to_be();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 4);
    }
}

/// Write a u32 into a vector, which must be 4 bytes long. The value is written in little-endian
/// format.
pub fn write_u32_le(dst: &mut[u8], mut input: u32) {
    assert!(dst.len() == 4);
    input = input.to_le();
    unsafe {
        let tmp = &input as *const _ as *const u8;
        ptr::copy_nonoverlapping(tmp, dst.get_unchecked_mut(0), 4);
    }
}

/// Write a vector of u32s into a vector of bytes. The values are written in little-endian format.
pub fn write_u32v_le (dst: &mut[u8], input: &[u32]) {
    assert!(dst.len() == 4 * input.len());
    unsafe {
        let mut x: *mut u8 = dst.get_unchecked_mut(0);
        let mut y: *const u32 = input.get_unchecked(0);
        for _ in 0..input.len() {
            let tmp = (*y).to_le();
            ptr::copy_nonoverlapping(&tmp as *const _ as *const u8, x, 4);
            x = x.offset(4);
            y = y.offset(1);
        }
    }
}

/// Read a vector of bytes into a vector of u64s. The values are read in big-endian format.
pub fn read_u64v_be(dst: &mut[u64], input: &[u8]) {
    assert!(dst.len() * 8 == input.len());
    unsafe {
        let mut x: *mut u64 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u64 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 8);
            *x = u64::from_be(tmp);
            x = x.offset(1);
            y = y.offset(8);
        }
    }
}

/// Read a vector of bytes into a vector of u64s. The values are read in little-endian format.
pub fn read_u64v_le(dst: &mut[u64], input: &[u8]) {
    assert!(dst.len() * 8 == input.len());
    unsafe {
        let mut x: *mut u64 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u64 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 8);
            *x = u64::from_le(tmp);
            x = x.offset(1);
            y = y.offset(8);
        }
    }
}

/// Read a vector of bytes into a vector of u32s. The values are read in big-endian format.
pub fn read_u32v_be(dst: &mut[u32], input: &[u8]) {
    assert!(dst.len() * 4 == input.len());
    unsafe {
        let mut x: *mut u32 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u32 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 4);
            *x = u32::from_be(tmp);
            x = x.offset(1);
            y = y.offset(4);
        }
    }
}

/// Read a vector of bytes into a vector of u32s. The values are read in little-endian format.
pub fn read_u32v_le(dst: &mut[u32], input: &[u8]) {
    assert!(dst.len() * 4 == input.len());
    unsafe {
        let mut x: *mut u32 = dst.get_unchecked_mut(0);
        let mut y: *const u8 = input.get_unchecked(0);
        for _ in 0..dst.len() {
            let mut tmp: u32 = mem::uninitialized();
            ptr::copy_nonoverlapping(y, &mut tmp as *mut _ as *mut u8, 4);
            *x = u32::from_le(tmp);
            x = x.offset(1);
            y = y.offset(4);
        }
    }
}

/// Read the value of a vector of bytes as a u32 value in little-endian format.
pub fn read_u32_le(input: &[u8]) -> u32 {
    assert!(input.len() == 4);
    unsafe {
        let mut tmp: u32 = mem::uninitialized();
        ptr::copy_nonoverlapping(input.get_unchecked(0), &mut tmp as *mut _ as *mut u8, 4);
        u32::from_le(tmp)
    }
}

/// Read the value of a vector of bytes as a u32 value in big-endian format.
pub fn read_u32_be(input: &[u8]) -> u32 {
    assert!(input.len() == 4);
    unsafe {
        let mut tmp: u32 = mem::uninitialized();
        ptr::copy_nonoverlapping(input.get_unchecked(0), &mut tmp as *mut _ as *mut u8, 4);
        u32::from_be(tmp)
    }
}

/// XOR plaintext and keystream, storing the result in dst.
pub fn xor_keystream(dst: &mut[u8], plaintext: &[u8], keystream: &[u8]) {
    assert!(dst.len() == plaintext.len());
    assert!(plaintext.len() <= keystream.len());

    // Do one byte at a time, using unsafe to skip bounds checking.
    let p = plaintext.as_ptr();
    let k = keystream.as_ptr();
    let d = dst.as_mut_ptr();
    for i in 0isize..plaintext.len() as isize {
        unsafe{ *d.offset(i) = *p.offset(i) ^ *k.offset(i) };
    }
}

/// Copy bytes from src to dest
#[inline]
pub fn copy_memory(src: &[u8], dst: &mut [u8]) {
    assert!(dst.len() >= src.len());
    unsafe {
        let srcp = src.as_ptr();
        let dstp = dst.as_mut_ptr();
        ptr::copy_nonoverlapping(srcp, dstp, src.len());
    }
}

/// Zero all bytes in dst
#[inline]
pub fn zero(dst: &mut [u8]) {
    unsafe {
        ptr::write_bytes(dst.as_mut_ptr(), 0, dst.len());
    }
}

/// An extension trait to implement a few useful serialization
/// methods on types that implement Write
pub trait WriteExt {
    fn write_u8(&mut self, val: u8) -> io::Result<()>;
    fn write_u32_le(&mut self, val: u32) -> io::Result<()>;
    fn write_u32_be(&mut self, val: u32) -> io::Result<()>;
    fn write_u64_le(&mut self, val: u64) -> io::Result<()>;
    fn write_u64_be(&mut self, val: u64) -> io::Result<()>;
}

impl <T> WriteExt for T where T: io::Write {
    fn write_u8(&mut self, val: u8) -> io::Result<()> {
        let buff = [val];
        self.write_all(&buff)
    }
    fn write_u32_le(&mut self, val: u32) -> io::Result<()> {
        let mut buff = [0u8; 4];
        write_u32_le(&mut buff, val);
        self.write_all(&buff)
    }
    fn write_u32_be(&mut self, val: u32) -> io::Result<()> {
        let mut buff = [0u8; 4];
        write_u32_be(&mut buff, val);
        self.write_all(&buff)
    }
    fn write_u64_le(&mut self, val: u64) -> io::Result<()> {
        let mut buff = [0u8; 8];
        write_u64_le(&mut buff, val);
        self.write_all(&buff)
    }
    fn write_u64_be(&mut self, val: u64) -> io::Result<()> {
        let mut buff = [0u8; 8];
        write_u64_be(&mut buff, val);
        self.write_all(&buff)
    }
}

/// symm_enc_or_dec() implements the necessary functionality to turn a SynchronousStreamCipher into
/// an Encryptor or Decryptor
pub fn symm_enc_or_dec<S: SynchronousStreamCipher, R: ReadBuffer, W: WriteBuffer>(
        c: &mut S,
        input: &mut R,
        output: &mut W) ->
        Result<BufferResult, SymmetricCipherError> {
    let count = std::cmp::min(input.remaining(), output.remaining());
    c.process(input.take_next(count), output.take_next(count));
    if input.is_empty() {
        Ok(BufferUnderflow)
    } else {
        Ok(BufferOverflow)
    }
}

/// Convert the value in bytes to the number of bits, a tuple where the 1st item is the
/// high-order value and the 2nd item is the low order value.
fn to_bits(x: u64) -> (u64, u64) {
    (x >> 61, x << 3)
}

/// Adds the specified number of bytes to the bit count. panic!() if this would cause numeric
/// overflow.
pub fn add_bytes_to_bits(bits: u64, bytes: u64) -> u64 {
    let (new_high_bits, new_low_bits) = to_bits(bytes);

    if new_high_bits > 0 {
        panic!("Numeric overflow occured.")
    }

    bits.checked_add(new_low_bits).expect("Numeric overflow occured.")
}

/// Adds the specified number of bytes to the bit count, which is a tuple where the first element is
/// the high order value. panic!() if this would cause numeric overflow.
pub fn add_bytes_to_bits_tuple
        (bits: (u64, u64), bytes: u64) -> (u64, u64) {
    let (new_high_bits, new_low_bits) = to_bits(bytes);
    let (hi, low) = bits;

    // Add the low order value - if there is no overflow, then add the high order values
    // If the addition of the low order values causes overflow, add one to the high order values
    // before adding them.
    match low.checked_add(new_low_bits) {
        Some(x) => {
            if new_high_bits == 0 {
                // This is the fast path - every other alternative will rarely occur in practice
                // considering how large an input would need to be for those paths to be used.
                return (hi, x);
            } else {
                match hi.checked_add(new_high_bits) {
                    Some(y) => return (y, x),
                    None => panic!("Numeric overflow occured.")
                }
            }
        },
        None => {
            let z = match new_high_bits.checked_add(1) {
                Some(w) => w,
                None => panic!("Numeric overflow occured.")
            };
            match hi.checked_add(z) {
                // This re-executes the addition that was already performed earlier when overflow
                // occured, this time allowing the overflow to happen. Technically, this could be
                // avoided by using the checked add intrinsic directly, but that involves using
                // unsafe code and is not really worthwhile considering how infrequently code will
                // run in practice. This is the reason that this function requires that the type T
                // be UnsignedInt - overflow is not defined for Signed types. This function could
                // be implemented for signed types as well if that were needed.
                Some(y) => return (y, low.wrapping_add(new_low_bits)),
                None => panic!("Numeric overflow occured.")
            }
        }
    }
}


/// A FixedBuffer, likes its name implies, is a fixed size buffer. When the buffer becomes full, it
/// must be processed. The input() method takes care of processing and then clearing the buffer
/// automatically. However, other methods do not and require the caller to process the buffer. Any
/// method that modifies the buffer directory or provides the caller with bytes that can be modifies
/// results in those bytes being marked as used by the buffer.
pub trait FixedBuffer {
    /// Input a vector of bytes. If the buffer becomes full, process it with the provided
    /// function and then clear the buffer.
    fn input<F: FnMut(&[u8])>(&mut self, input: &[u8], func: F);

    /// Reset the buffer.
    fn reset(&mut self);

    /// Zero the buffer up until the specified index. The buffer position currently must not be
    /// greater than that index.
    fn zero_until(&mut self, idx: usize);

    /// Get a slice of the buffer of the specified size. There must be at least that many bytes
    /// remaining in the buffer.
    fn next<'s>(&'s mut self, len: usize) -> &'s mut [u8];

    /// Get the current buffer. The buffer must already be full. This clears the buffer as well.
    fn full_buffer<'s>(&'s mut self) -> &'s [u8];

     /// Get the current buffer.
    fn current_buffer<'s>(&'s mut self) -> &'s [u8];

    /// Get the current position of the buffer.
    fn position(&self) -> usize;

    /// Get the number of bytes remaining in the buffer until it is full.
    fn remaining(&self) -> usize;

    /// Get the size of the buffer
    fn size(&self) -> usize;
}

macro_rules! impl_fixed_buffer( ($name:ident, $size:expr) => (
    impl FixedBuffer for $name {
        fn input<F: FnMut(&[u8])>(&mut self, input: &[u8], mut func: F) {
            let mut i = 0;

            // FIXME: #6304 - This local variable shouldn't be necessary.
            let size = $size;

            // If there is already data in the buffer, copy as much as we can into it and process
            // the data if the buffer becomes full.
            if self.buffer_idx != 0 {
                let buffer_remaining = size - self.buffer_idx;
                if input.len() >= buffer_remaining {
                        copy_memory(
                            &input[..buffer_remaining],
                            &mut self.buffer[self.buffer_idx..size]);
                    self.buffer_idx = 0;
                    func(&self.buffer);
                    i += buffer_remaining;
                } else {
                    copy_memory(
                        input,
                        &mut self.buffer[self.buffer_idx..self.buffer_idx + input.len()]);
                    self.buffer_idx += input.len();
                    return;
                }
            }

            // While we have at least a full buffer size chunks's worth of data, process that data
            // without copying it into the buffer
            while input.len() - i >= size {
                func(&input[i..i + size]);
                i += size;
            }

            // Copy any input data into the buffer. At this point in the method, the ammount of
            // data left in the input vector will be less than the buffer size and the buffer will
            // be empty.
            let input_remaining = input.len() - i;
            copy_memory(
                &input[i..],
                &mut self.buffer[0..input_remaining]);
            self.buffer_idx += input_remaining;
        }

        fn reset(&mut self) {
            self.buffer_idx = 0;
        }

        fn zero_until(&mut self, idx: usize) {
            assert!(idx >= self.buffer_idx);
            zero(&mut self.buffer[self.buffer_idx..idx]);
            self.buffer_idx = idx;
        }

        fn next<'s>(&'s mut self, len: usize) -> &'s mut [u8] {
            self.buffer_idx += len;
            &mut self.buffer[self.buffer_idx - len..self.buffer_idx]
        }

        fn full_buffer<'s>(&'s mut self) -> &'s [u8] {
            assert!(self.buffer_idx == $size);
            self.buffer_idx = 0;
            &self.buffer[..$size]
        }

        fn current_buffer<'s>(&'s mut self) -> &'s [u8] {
            let tmp = self.buffer_idx;
            self.buffer_idx = 0;
            &self.buffer[..tmp]
        }

        fn position(&self) -> usize { self.buffer_idx }

        fn remaining(&self) -> usize { $size - self.buffer_idx }

        fn size(&self) -> usize { $size }
    }
));

/// A fixed size buffer of 64 bytes useful for cryptographic operations.
#[derive(Copy)]
pub struct FixedBuffer64 {
    buffer: [u8; 64],
    buffer_idx: usize,
}

impl Clone for FixedBuffer64 { fn clone(&self) -> FixedBuffer64 { *self } }

impl FixedBuffer64 {
    /// Create a new buffer
    pub fn new() -> FixedBuffer64 {
        FixedBuffer64 {
            buffer: [0u8; 64],
            buffer_idx: 0
        }
    }
}

impl_fixed_buffer!(FixedBuffer64, 64);

/// A fixed size buffer of 128 bytes useful for cryptographic operations.
#[derive(Copy)]
pub struct FixedBuffer128 {
    buffer: [u8; 128],
    buffer_idx: usize,
}

impl Clone for FixedBuffer128 { fn clone(&self) -> FixedBuffer128 { *self } }

impl FixedBuffer128 {
    /// Create a new buffer
    pub fn new() -> FixedBuffer128 {
        FixedBuffer128 {
            buffer: [0u8; 128],
            buffer_idx: 0
        }
    }
}

impl_fixed_buffer!(FixedBuffer128, 128);


/// The StandardPadding trait adds a method useful for various hash algorithms to a FixedBuffer
/// struct.
pub trait StandardPadding {
    /// Add standard padding to the buffer. The buffer must not be full when this method is called
    /// and is guaranteed to have exactly rem remaining bytes when it returns. If there are not at
    /// least rem bytes available, the buffer will be zero padded, processed, cleared, and then
    /// filled with zeros again until only rem bytes are remaining.
    fn standard_padding<F: FnMut(&[u8])>(&mut self, rem: usize, func: F);
}

impl <T: FixedBuffer> StandardPadding for T {
    fn standard_padding<F: FnMut(&[u8])>(&mut self, rem: usize, mut func: F) {
        let size = self.size();

        self.next(1)[0] = 128;

        if self.remaining() < rem {
            self.zero_until(size);
            func(self.full_buffer());
        }

        self.zero_until(size - rem);
    }
}


#[cfg(test)]
pub mod test {
    use std;
    use std::iter::repeat;

    use rand::IsaacRng;
    use rand::distributions::{IndependentSample, Range};

    use cryptoutil::{add_bytes_to_bits, add_bytes_to_bits_tuple};
    use digest::Digest;

    /// Feed 1,000,000 'a's into the digest with varying input sizes and check that the result is
    /// correct.
    pub fn test_digest_1million_random<D: Digest>(digest: &mut D, blocksize: usize, expected: &str) {
        let total_size = 1000000;
        let buffer: Vec<u8> = repeat('a' as u8).take(blocksize * 2).collect();
        let mut rng = IsaacRng::new_unseeded();
        let range = Range::new(0, 2 * blocksize + 1);
        let mut count = 0;

        digest.reset();

        while count < total_size {
            let next = range.ind_sample(&mut rng);
            let remaining = total_size - count;
            let size = if next > remaining { remaining } else { next };
            digest.input(&buffer[..size]);
            count += size;
        }

        let result_str = digest.result_str();

        assert!(expected == &result_str[..]);
    }

    // A normal addition - no overflow occurs
    #[test]
    fn test_add_bytes_to_bits_ok() {
        assert!(add_bytes_to_bits(100, 10) == 180);
    }

    // A simple failure case - adding 1 to the max value
    #[test]
    #[should_panic]
    fn test_add_bytes_to_bits_overflow() {
        add_bytes_to_bits(std::u64::MAX, 1);
    }

    // A normal addition - no overflow occurs (fast path)
    #[test]
    fn test_add_bytes_to_bits_tuple_ok() {
        assert!(add_bytes_to_bits_tuple((5, 100), 10) == (5, 180));
    }

    // The low order value overflows into the high order value
    #[test]
    fn test_add_bytes_to_bits_tuple_ok2() {
        assert!(add_bytes_to_bits_tuple((5, std::u64::MAX), 1) == (6, 7));
    }

    // The value to add is too large to be converted into bits without overflowing its type
    #[test]
    fn test_add_bytes_to_bits_tuple_ok3() {
        assert!(add_bytes_to_bits_tuple((5, 0), 0x4000000000000001) == (7, 8));
    }

    // A simple failure case - adding 1 to the max value
    #[test]
    #[should_panic]
    fn test_add_bytes_to_bits_tuple_overflow() {
        add_bytes_to_bits_tuple((std::u64::MAX, std::u64::MAX), 1);
    }

    // The value to add is too large to convert to bytes without overflowing its type, but the high
    // order value from this conversion overflows when added to the existing high order value
    #[test]
    #[should_panic]
    fn test_add_bytes_to_bits_tuple_overflow2() {
        let value: u64 = std::u64::MAX;
        add_bytes_to_bits_tuple((value - 1, 0), 0x8000000000000000);
    }
}