1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*! The DFA matching engine. A DFA provides faster matching because the engine is in exactly one state at any point in time. In the NFA, there may be multiple active states, and considerable CPU cycles are spent shuffling them around. In finite automata speak, the DFA follows epsilon transitions in the regex far less than the NFA. A DFA is a classic trade off between time and space. The NFA is slower, but its memory requirements are typically small and predictable. The DFA is faster, but given the right regex and the right input, the number of states in the DFA can grow exponentially. To mitigate this space problem, we do two things: 1. We implement an *online* DFA. That is, the DFA is constructed from the NFA during a search. When a new state is computed, it is stored in a cache so that it may be reused. An important consequence of this implementation is that states that are never reached for a particular input are never computed. (This is impossible in an "offline" DFA which needs to compute all possible states up front.) 2. If the cache gets too big, we wipe it and continue matching. In pathological cases, a new state can be created for every byte of input. (e.g., The regex `(a|b)*a(a|b){20}` on a long sequence of a's and b's.) In this case, performance regresses to slightly slower than the full NFA simulation, in large part because the cache becomes useless. If the cache is wiped too frequently, the DFA quits and control falls back to one of the NFA simulations. Because of the "lazy" nature of this DFA, the inner matching loop is considerably more complex than one might expect out of a DFA. A number of tricks are employed to make it fast. Tread carefully. N.B. While this implementation is heavily commented, Russ Cox's series of articles on regexes is strongly recommended: https://swtch.com/~rsc/regexp/ (As is the DFA implementation in RE2, which heavily influenced this implementation.) */ use std::collections::HashMap; use std::fmt; use std::iter::repeat; use std::mem; use exec::ProgramCache; use prog::{Inst, Program}; use sparse::SparseSet; /// Return true if and only if the given program can be executed by a DFA. /// /// Generally, a DFA is always possible. A pathological case where it is not /// possible is if the number of NFA states exceeds `u32::MAX`, in which case, /// this function will return false. /// /// This function will also return false if the given program has any Unicode /// instructions (Char or Ranges) since the DFA operates on bytes only. pub fn can_exec(insts: &Program) -> bool { use prog::Inst::*; // If for some reason we manage to allocate a regex program with more // than i32::MAX instructions, then we can't execute the DFA because we // use 32 bit instruction pointer deltas for memory savings. // If i32::MAX is the largest positive delta, // then -i32::MAX == i32::MIN + 1 is the largest negative delta, // and we are OK to use 32 bits. if insts.dfa_size_limit == 0 || insts.len() > ::std::i32::MAX as usize { return false; } for inst in insts { match *inst { Char(_) | Ranges(_) => return false, EmptyLook(_) | Match(_) | Save(_) | Split(_) | Bytes(_) => {} } } true } /// A reusable cache of DFA states. /// /// This cache is reused between multiple invocations of the same regex /// program. (It is not shared simultaneously between threads. If there is /// contention, then new caches are created.) #[derive(Clone, Debug)] pub struct Cache { /// Group persistent DFA related cache state together. The sparse sets /// listed below are used as scratch space while computing uncached states. inner: CacheInner, /// qcur and qnext are ordered sets with constant time /// addition/membership/clearing-whole-set and linear time iteration. They /// are used to manage the sets of NFA states in DFA states when computing /// cached DFA states. In particular, the order of the NFA states matters /// for leftmost-first style matching. Namely, when computing a cached /// state, the set of NFA states stops growing as soon as the first Match /// instruction is observed. qcur: SparseSet, qnext: SparseSet, } /// `CacheInner` is logically just a part of Cache, but groups together fields /// that aren't passed as function parameters throughout search. (This split /// is mostly an artifact of the borrow checker. It is happily paid.) #[derive(Clone, Debug)] struct CacheInner { /// A cache of pre-compiled DFA states, keyed by the set of NFA states /// and the set of empty-width flags set at the byte in the input when the /// state was observed. /// /// A StatePtr is effectively a `*State`, but to avoid various inconvenient /// things, we just pass indexes around manually. The performance impact of /// this is probably an instruction or two in the inner loop. However, on /// 64 bit, each StatePtr is half the size of a *State. compiled: HashMap<State, StatePtr>, /// The transition table. /// /// The transition table is laid out in row-major order, where states are /// rows and the transitions for each state are columns. At a high level, /// given state `s` and byte `b`, the next state can be found at index /// `s * 256 + b`. /// /// This is, of course, a lie. A StatePtr is actually a pointer to the /// *start* of a row in this table. When indexing in the DFA's inner loop, /// this removes the need to multiply the StatePtr by the stride. Yes, it /// matters. This reduces the number of states we can store, but: the /// stride is rarely 256 since we define transitions in terms of /// *equivalence classes* of bytes. Each class corresponds to a set of /// bytes that never discriminate a distinct path through the DFA from each /// other. trans: Transitions, /// Our set of states. Note that `StatePtr / num_byte_classes` indexes /// this Vec rather than just a `StatePtr`. states: Vec<State>, /// A set of cached start states, which are limited to the number of /// permutations of flags set just before the initial byte of input. (The /// index into this vec is a `EmptyFlags`.) /// /// N.B. A start state can be "dead" (i.e., no possible match), so we /// represent it with a StatePtr. start_states: Vec<StatePtr>, /// Stack scratch space used to follow epsilon transitions in the NFA. /// (This permits us to avoid recursion.) /// /// The maximum stack size is the number of NFA states. stack: Vec<InstPtr>, /// The total number of times this cache has been flushed by the DFA /// because of space constraints. flush_count: u64, /// The total heap size of the DFA's cache. We use this to determine when /// we should flush the cache. size: usize, } /// The transition table. /// /// It is laid out in row-major order, with states as rows and byte class /// transitions as columns. /// /// The transition table is responsible for producing valid `StatePtrs`. A /// `StatePtr` points to the start of a particular row in this table. When /// indexing to find the next state this allows us to avoid a multiplication /// when computing an index into the table. #[derive(Clone)] struct Transitions { /// The table. table: Vec<StatePtr>, /// The stride. num_byte_classes: usize, } /// Fsm encapsulates the actual execution of the DFA. #[derive(Debug)] pub struct Fsm<'a> { /// prog contains the NFA instruction opcodes. DFA execution uses either /// the `dfa` instructions or the `dfa_reverse` instructions from /// `exec::ExecReadOnly`. (It never uses `ExecReadOnly.nfa`, which may have /// Unicode opcodes that cannot be executed by the DFA.) prog: &'a Program, /// The start state. We record it here because the pointer may change /// when the cache is wiped. start: StatePtr, /// The current position in the input. at: usize, /// Should we quit after seeing the first match? e.g., When the caller /// uses `is_match` or `shortest_match`. quit_after_match: bool, /// The last state that matched. /// /// When no match has occurred, this is set to STATE_UNKNOWN. /// /// This is only useful when matching regex sets. The last match state /// is useful because it contains all of the match instructions seen, /// thereby allowing us to enumerate which regexes in the set matched. last_match_si: StatePtr, /// The input position of the last cache flush. We use this to determine /// if we're thrashing in the cache too often. If so, the DFA quits so /// that we can fall back to the NFA algorithm. last_cache_flush: usize, /// All cached DFA information that is persisted between searches. cache: &'a mut CacheInner, } /// The result of running the DFA. /// /// Generally, the result is either a match or not a match, but sometimes the /// DFA runs too slowly because the cache size is too small. In that case, it /// gives up with the intent of falling back to the NFA algorithm. /// /// The DFA can also give up if it runs out of room to create new states, or if /// it sees non-ASCII bytes in the presence of a Unicode word boundary. #[derive(Clone, Debug)] pub enum Result<T> { Match(T), NoMatch(usize), Quit, } impl<T> Result<T> { /// Returns true if this result corresponds to a match. pub fn is_match(&self) -> bool { match *self { Result::Match(_) => true, Result::NoMatch(_) | Result::Quit => false, } } /// Maps the given function onto T and returns the result. /// /// If this isn't a match, then this is a no-op. pub fn map<U, F: FnMut(T) -> U>(self, mut f: F) -> Result<U> { match self { Result::Match(t) => Result::Match(f(t)), Result::NoMatch(x) => Result::NoMatch(x), Result::Quit => Result::Quit, } } /// Sets the non-match position. /// /// If this isn't a non-match, then this is a no-op. fn set_non_match(self, at: usize) -> Result<T> { match self { Result::NoMatch(_) => Result::NoMatch(at), r => r, } } } /// `State` is a DFA state. It contains an ordered set of NFA states (not /// necessarily complete) and a smattering of flags. /// /// The flags are packed into the first byte of data. /// /// States don't carry their transitions. Instead, transitions are stored in /// a single row-major table. /// /// Delta encoding is used to store the instruction pointers. /// The first instruction pointer is stored directly starting /// at data[1], and each following pointer is stored as an offset /// to the previous one. If a delta is in the range -127..127, /// it is packed into a single byte; Otherwise the byte 128 (-128 as an i8) /// is coded as a flag, followed by 4 bytes encoding the delta. #[derive(Clone, Eq, Hash, PartialEq)] struct State{ data: Box<[u8]>, } /// `InstPtr` is a 32 bit pointer into a sequence of opcodes (i.e., it indexes /// an NFA state). /// /// Throughout this library, this is usually set to `usize`, but we force a /// `u32` here for the DFA to save on space. type InstPtr = u32; /// Adds ip to data using delta encoding with respect to prev. /// /// After completion, `data` will contain `ip` and `prev` will be set to `ip`. fn push_inst_ptr(data: &mut Vec<u8>, prev: &mut InstPtr, ip: InstPtr) { let delta = (ip as i32) - (*prev as i32); write_vari32(data, delta); *prev = ip; } struct InstPtrs<'a> { base: usize, data: &'a [u8], } impl <'a>Iterator for InstPtrs<'a> { type Item = usize; fn next(&mut self) -> Option<usize> { if self.data.is_empty() { return None; } let (delta, nread) = read_vari32(self.data); let base = self.base as i32 + delta; debug_assert!(base >= 0); debug_assert!(nread > 0); self.data = &self.data[nread..]; self.base = base as usize; Some(self.base) } } impl State { fn flags(&self) -> StateFlags { StateFlags(self.data[0]) } fn inst_ptrs(&self) -> InstPtrs { InstPtrs { base: 0, data: &self.data[1..], } } } /// `StatePtr` is a 32 bit pointer to the start of a row in the transition /// table. /// /// It has many special values. There are two types of special values: /// sentinels and flags. /// /// Sentinels corresponds to special states that carry some kind of /// significance. There are three such states: unknown, dead and quit states. /// /// Unknown states are states that haven't been computed yet. They indicate /// that a transition should be filled in that points to either an existing /// cached state or a new state altogether. In general, an unknown state means /// "follow the NFA's epsilon transitions." /// /// Dead states are states that can never lead to a match, no matter what /// subsequent input is observed. This means that the DFA should quit /// immediately and return the longest match it has found thus far. /// /// Quit states are states that imply the DFA is not capable of matching the /// regex correctly. Currently, this is only used when a Unicode word boundary /// exists in the regex *and* a non-ASCII byte is observed. /// /// The other type of state pointer is a state pointer with special flag bits. /// There are two flags: a start flag and a match flag. The lower bits of both /// kinds always contain a "valid" `StatePtr` (indicated by the `STATE_MAX` /// mask). /// /// The start flag means that the state is a start state, and therefore may be /// subject to special prefix scanning optimizations. /// /// The match flag means that the state is a match state, and therefore the /// current position in the input (while searching) should be recorded. /// /// The above exists mostly in the service of making the inner loop fast. /// In particular, the inner *inner* loop looks something like this: /// /// ```ignore /// while state <= STATE_MAX and i < len(text): /// state = state.next[i] /// ``` /// /// This is nice because it lets us execute a lazy DFA as if it were an /// entirely offline DFA (i.e., with very few instructions). The loop will /// quit only when we need to examine a case that needs special attention. type StatePtr = u32; /// An unknown state means that the state has not been computed yet, and that /// the only way to progress is to compute it. const STATE_UNKNOWN: StatePtr = 1<<31; /// A dead state means that the state has been computed and it is known that /// once it is entered, no future match can ever occur. const STATE_DEAD: StatePtr = STATE_UNKNOWN + 1; /// A quit state means that the DFA came across some input that it doesn't /// know how to process correctly. The DFA should quit and another matching /// engine should be run in its place. const STATE_QUIT: StatePtr = STATE_DEAD + 1; /// A start state is a state that the DFA can start in. /// /// Note that start states have their lower bits set to a state pointer. const STATE_START: StatePtr = 1<<30; /// A match state means that the regex has successfully matched. /// /// Note that match states have their lower bits set to a state pointer. const STATE_MATCH: StatePtr = 1<<29; /// The maximum state pointer. This is useful to mask out the "valid" state /// pointer from a state with the "start" or "match" bits set. /// /// It doesn't make sense to use this with unknown, dead or quit state /// pointers, since those pointers are sentinels and never have their lower /// bits set to anything meaningful. const STATE_MAX: StatePtr = STATE_MATCH - 1; /// Byte is a u8 in spirit, but a u16 in practice so that we can represent the /// special EOF sentinel value. #[derive(Copy, Clone, Debug)] struct Byte(u16); /// A set of flags for zero-width assertions. #[derive(Clone, Copy, Eq, Debug, Default, Hash, PartialEq)] struct EmptyFlags { start: bool, end: bool, start_line: bool, end_line: bool, word_boundary: bool, not_word_boundary: bool, } /// A set of flags describing various configurations of a DFA state. This is /// represented by a `u8` so that it is compact. #[derive(Clone, Copy, Eq, Default, Hash, PartialEq)] struct StateFlags(u8); impl Cache { /// Create new empty cache for the DFA engine. pub fn new(prog: &Program) -> Self { // We add 1 to account for the special EOF byte. let num_byte_classes = (prog.byte_classes[255] as usize + 1) + 1; let starts = vec![STATE_UNKNOWN; 256]; let mut cache = Cache { inner: CacheInner { compiled: HashMap::new(), trans: Transitions::new(num_byte_classes), states: vec![], start_states: starts, stack: vec![], flush_count: 0, size: 0, }, qcur: SparseSet::new(prog.insts.len()), qnext: SparseSet::new(prog.insts.len()), }; cache.inner.reset_size(); cache } } impl CacheInner { /// Resets the cache size to account for fixed costs, such as the program /// and stack sizes. fn reset_size(&mut self) { self.size = (self.start_states.len() * mem::size_of::<StatePtr>()) + (self.stack.len() * mem::size_of::<InstPtr>()); } } impl<'a> Fsm<'a> { #[inline(always)] // reduces constant overhead pub fn forward( prog: &'a Program, cache: &ProgramCache, quit_after_match: bool, text: &[u8], at: usize, ) -> Result<usize> { let mut cache = cache.borrow_mut(); let cache = &mut cache.dfa; let mut dfa = Fsm { prog: prog, start: 0, // filled in below at: at, quit_after_match: quit_after_match, last_match_si: STATE_UNKNOWN, last_cache_flush: at, cache: &mut cache.inner, }; let (empty_flags, state_flags) = dfa.start_flags(text, at); dfa.start = match dfa.start_state( &mut cache.qcur, empty_flags, state_flags, ) { None => return Result::Quit, Some(STATE_DEAD) => return Result::NoMatch(at), Some(si) => si, }; debug_assert!(dfa.start != STATE_UNKNOWN); dfa.exec_at(&mut cache.qcur, &mut cache.qnext, text) } #[inline(always)] // reduces constant overhead pub fn reverse( prog: &'a Program, cache: &ProgramCache, quit_after_match: bool, text: &[u8], at: usize, ) -> Result<usize> { let mut cache = cache.borrow_mut(); let cache = &mut cache.dfa_reverse; let mut dfa = Fsm { prog: prog, start: 0, // filled in below at: at, quit_after_match: quit_after_match, last_match_si: STATE_UNKNOWN, last_cache_flush: at, cache: &mut cache.inner, }; let (empty_flags, state_flags) = dfa.start_flags_reverse(text, at); dfa.start = match dfa.start_state( &mut cache.qcur, empty_flags, state_flags, ) { None => return Result::Quit, Some(STATE_DEAD) => return Result::NoMatch(at), Some(si) => si, }; debug_assert!(dfa.start != STATE_UNKNOWN); dfa.exec_at_reverse(&mut cache.qcur, &mut cache.qnext, text) } #[inline(always)] // reduces constant overhead pub fn forward_many( prog: &'a Program, cache: &ProgramCache, matches: &mut [bool], text: &[u8], at: usize, ) -> Result<usize> { debug_assert!(matches.len() == prog.matches.len()); let mut cache = cache.borrow_mut(); let cache = &mut cache.dfa; let mut dfa = Fsm { prog: prog, start: 0, // filled in below at: at, quit_after_match: false, last_match_si: STATE_UNKNOWN, last_cache_flush: at, cache: &mut cache.inner, }; let (empty_flags, state_flags) = dfa.start_flags(text, at); dfa.start = match dfa.start_state( &mut cache.qcur, empty_flags, state_flags, ) { None => return Result::Quit, Some(STATE_DEAD) => return Result::NoMatch(at), Some(si) => si, }; debug_assert!(dfa.start != STATE_UNKNOWN); let result = dfa.exec_at(&mut cache.qcur, &mut cache.qnext, text); if result.is_match() { if matches.len() == 1 { matches[0] = true; } else { debug_assert!(dfa.last_match_si != STATE_UNKNOWN); debug_assert!(dfa.last_match_si != STATE_DEAD); for ip in dfa.state(dfa.last_match_si).inst_ptrs() { if let Inst::Match(slot) = dfa.prog[ip] { matches[slot] = true; } } } } result } /// Executes the DFA on a forward NFA. /// /// {qcur,qnext} are scratch ordered sets which may be non-empty. #[inline(always)] // reduces constant overhead fn exec_at( &mut self, qcur: &mut SparseSet, qnext: &mut SparseSet, text: &[u8], ) -> Result<usize> { // For the most part, the DFA is basically: // // last_match = null // while current_byte != EOF: // si = current_state.next[current_byte] // if si is match // last_match = si // return last_match // // However, we need to deal with a few things: // // 1. This is an *online* DFA, so the current state's next list // may not point to anywhere yet, so we must go out and compute // them. (They are then cached into the current state's next list // to avoid re-computation.) // 2. If we come across a state that is known to be dead (i.e., never // leads to a match), then we can quit early. // 3. If the caller just wants to know if a match occurs, then we // can quit as soon as we know we have a match. (Full leftmost // first semantics require continuing on.) // 4. If we're in the start state, then we can use a pre-computed set // of prefix literals to skip quickly along the input. // 5. After the input is exhausted, we run the DFA on one symbol // that stands for EOF. This is useful for handling empty width // assertions. // 6. We can't actually do state.next[byte]. Instead, we have to do // state.next[byte_classes[byte]], which permits us to keep the // 'next' list very small. // // Since there's a bunch of extra stuff we need to consider, we do some // pretty hairy tricks to get the inner loop to run as fast as // possible. debug_assert!(!self.prog.is_reverse); // The last match is the currently known ending match position. It is // reported as an index to the most recent byte that resulted in a // transition to a match state and is always stored in capture slot `1` // when searching forwards. Its maximum value is `text.len()`. let mut result = Result::NoMatch(self.at); let (mut prev_si, mut next_si) = (self.start, self.start); let mut at = self.at; while at < text.len() { // This is the real inner loop. We take advantage of special bits // set in the state pointer to determine whether a state is in the // "common" case or not. Specifically, the common case is a // non-match non-start non-dead state that has already been // computed. So long as we remain in the common case, this inner // loop will chew through the input. // // We also unroll the loop 4 times to amortize the cost of checking // whether we've consumed the entire input. We are also careful // to make sure that `prev_si` always represents the previous state // and `next_si` always represents the next state after the loop // exits, even if it isn't always true inside the loop. while next_si <= STATE_MAX && at < text.len() { // Argument for safety is in the definition of next_si. prev_si = unsafe { self.next_si(next_si, text, at) }; at += 1; if prev_si > STATE_MAX || at + 2 >= text.len() { mem::swap(&mut prev_si, &mut next_si); break; } next_si = unsafe { self.next_si(prev_si, text, at) }; at += 1; if next_si > STATE_MAX { break; } prev_si = unsafe { self.next_si(next_si, text, at) }; at += 1; if prev_si > STATE_MAX { mem::swap(&mut prev_si, &mut next_si); break; } next_si = unsafe { self.next_si(prev_si, text, at) }; at += 1; } if next_si & STATE_MATCH > 0 { // A match state is outside of the common case because it needs // special case analysis. In particular, we need to record the // last position as having matched and possibly quit the DFA if // we don't need to keep matching. next_si &= !STATE_MATCH; result = Result::Match(at - 1); if self.quit_after_match { return result; } self.last_match_si = next_si; prev_si = next_si; // This permits short-circuiting when matching a regex set. // In particular, if this DFA state contains only match states, // then it's impossible to extend the set of matches since // match states are final. Therefore, we can quit. if self.prog.matches.len() > 1 { let state = self.state(next_si); let just_matches = state.inst_ptrs() .all(|ip| self.prog[ip].is_match()); if just_matches { return result; } } // Another inner loop! If the DFA stays in this particular // match state, then we can rip through all of the input // very quickly, and only recording the match location once // we've left this particular state. let cur = at; while (next_si & !STATE_MATCH) == prev_si && at + 2 < text.len() { // Argument for safety is in the definition of next_si. next_si = unsafe { self.next_si(next_si & !STATE_MATCH, text, at) }; at += 1; } if at > cur { result = Result::Match(at - 2); } } else if next_si & STATE_START > 0 { // A start state isn't in the common case because we may // what to do quick prefix scanning. If the program doesn't // have a detected prefix, then start states are actually // considered common and this case is never reached. debug_assert!(self.has_prefix()); next_si &= !STATE_START; prev_si = next_si; at = match self.prefix_at(text, at) { None => return Result::NoMatch(text.len()), Some(i) => i, }; } else if next_si >= STATE_UNKNOWN { if next_si == STATE_QUIT { return Result::Quit; } // Finally, this corresponds to the case where the transition // entered a state that can never lead to a match or a state // that hasn't been computed yet. The latter being the "slow" // path. let byte = Byte::byte(text[at - 1]); // We no longer care about the special bits in the state // pointer. prev_si &= STATE_MAX; // Record where we are. This is used to track progress for // determining whether we should quit if we've flushed the // cache too much. self.at = at; next_si = match self.next_state(qcur, qnext, prev_si, byte) { None => return Result::Quit, Some(STATE_DEAD) => return result.set_non_match(at), Some(si) => si, }; debug_assert!(next_si != STATE_UNKNOWN); if next_si & STATE_MATCH > 0 { next_si &= !STATE_MATCH; result = Result::Match(at - 1); if self.quit_after_match { return result; } self.last_match_si = next_si; } prev_si = next_si; } else { prev_si = next_si; } } // Run the DFA once more on the special EOF senitnel value. // We don't care about the special bits in the state pointer any more, // so get rid of them. prev_si &= STATE_MAX; prev_si = match self.next_state(qcur, qnext, prev_si, Byte::eof()) { None => return Result::Quit, Some(STATE_DEAD) => return result.set_non_match(text.len()), Some(si) => si & !STATE_START, }; debug_assert!(prev_si != STATE_UNKNOWN); if prev_si & STATE_MATCH > 0 { prev_si &= !STATE_MATCH; self.last_match_si = prev_si; result = Result::Match(text.len()); } result } /// Executes the DFA on a reverse NFA. #[inline(always)] // reduces constant overhead fn exec_at_reverse( &mut self, qcur: &mut SparseSet, qnext: &mut SparseSet, text: &[u8], ) -> Result<usize> { // The comments in `exec_at` above mostly apply here too. The main // difference is that we move backwards over the input and we look for // the longest possible match instead of the leftmost-first match. // // N.B. The code duplication here is regrettable. Efforts to improve // it without sacrificing performance are welcome. ---AG debug_assert!(self.prog.is_reverse); let mut result = Result::NoMatch(self.at); let (mut prev_si, mut next_si) = (self.start, self.start); let mut at = self.at; while at > 0 { while next_si <= STATE_MAX && at > 0 { // Argument for safety is in the definition of next_si. at -= 1; prev_si = unsafe { self.next_si(next_si, text, at) }; if prev_si > STATE_MAX || at <= 4 { mem::swap(&mut prev_si, &mut next_si); break; } at -= 1; next_si = unsafe { self.next_si(prev_si, text, at) }; if next_si > STATE_MAX { break; } at -= 1; prev_si = unsafe { self.next_si(next_si, text, at) }; if prev_si > STATE_MAX { mem::swap(&mut prev_si, &mut next_si); break; } at -= 1; next_si = unsafe { self.next_si(prev_si, text, at) }; } if next_si & STATE_MATCH > 0 { next_si &= !STATE_MATCH; result = Result::Match(at + 1); if self.quit_after_match { return result } self.last_match_si = next_si; prev_si = next_si; let cur = at; while (next_si & !STATE_MATCH) == prev_si && at >= 2 { // Argument for safety is in the definition of next_si. at -= 1; next_si = unsafe { self.next_si(next_si & !STATE_MATCH, text, at) }; } if at < cur { result = Result::Match(at + 2); } } else if next_si >= STATE_UNKNOWN { if next_si == STATE_QUIT { return Result::Quit; } let byte = Byte::byte(text[at]); prev_si &= STATE_MAX; self.at = at; next_si = match self.next_state(qcur, qnext, prev_si, byte) { None => return Result::Quit, Some(STATE_DEAD) => return result.set_non_match(at), Some(si) => si, }; debug_assert!(next_si != STATE_UNKNOWN); if next_si & STATE_MATCH > 0 { next_si &= !STATE_MATCH; result = Result::Match(at + 1); if self.quit_after_match { return result; } self.last_match_si = next_si; } prev_si = next_si; } else { prev_si = next_si; } } // Run the DFA once more on the special EOF senitnel value. prev_si = match self.next_state(qcur, qnext, prev_si, Byte::eof()) { None => return Result::Quit, Some(STATE_DEAD) => return result.set_non_match(0), Some(si) => si, }; debug_assert!(prev_si != STATE_UNKNOWN); if prev_si & STATE_MATCH > 0 { prev_si &= !STATE_MATCH; self.last_match_si = prev_si; result = Result::Match(0); } result } /// next_si transitions to the next state, where the transition input /// corresponds to text[i]. /// /// This elides bounds checks, and is therefore unsafe. #[inline(always)] unsafe fn next_si(&self, si: StatePtr, text: &[u8], i: usize) -> StatePtr { // What is the argument for safety here? // We have three unchecked accesses that could possibly violate safety: // // 1. The given byte of input (`text[i]`). // 2. The class of the byte of input (`classes[text[i]]`). // 3. The transition for the class (`trans[si + cls]`). // // (1) is only safe when calling next_si is guarded by // `i < text.len()`. // // (2) is the easiest case to guarantee since `text[i]` is always a // `u8` and `self.prog.byte_classes` always has length `u8::MAX`. // (See `ByteClassSet.byte_classes` in `compile.rs`.) // // (3) is only safe if (1)+(2) are safe. Namely, the transitions // of every state are defined to have length equal to the number of // byte classes in the program. Therefore, a valid class leads to a // valid transition. (All possible transitions are valid lookups, even // if it points to a state that hasn't been computed yet.) (3) also // relies on `si` being correct, but StatePtrs should only ever be // retrieved from the transition table, which ensures they are correct. debug_assert!(i < text.len()); let b = *text.get_unchecked(i); debug_assert!((b as usize) < self.prog.byte_classes.len()); let cls = *self.prog.byte_classes.get_unchecked(b as usize); self.cache.trans.next_unchecked(si, cls as usize) } /// Computes the next state given the current state and the current input /// byte (which may be EOF). /// /// If STATE_DEAD is returned, then there is no valid state transition. /// This implies that no permutation of future input can lead to a match /// state. /// /// STATE_UNKNOWN can never be returned. fn exec_byte( &mut self, qcur: &mut SparseSet, qnext: &mut SparseSet, mut si: StatePtr, b: Byte, ) -> Option<StatePtr> { use prog::Inst::*; // Initialize a queue with the current DFA state's NFA states. qcur.clear(); for ip in self.state(si).inst_ptrs() { qcur.insert(ip); } // Before inspecting the current byte, we may need to also inspect // whether the position immediately preceding the current byte // satisfies the empty assertions found in the current state. // // We only need to do this step if there are any empty assertions in // the current state. let is_word_last = self.state(si).flags().is_word(); let is_word = b.is_ascii_word(); if self.state(si).flags().has_empty() { // Compute the flags immediately preceding the current byte. // This means we only care about the "end" or "end line" flags. // (The "start" flags are computed immediately proceding the // current byte and is handled below.) let mut flags = EmptyFlags::default(); if b.is_eof() { flags.end = true; flags.end_line = true; } else if b.as_byte().map_or(false, |b| b == b'\n') { flags.end_line = true; } if is_word_last == is_word { flags.not_word_boundary = true; } else { flags.word_boundary = true; } // Now follow epsilon transitions from every NFA state, but make // sure we only follow transitions that satisfy our flags. qnext.clear(); for &ip in &*qcur { self.follow_epsilons(usize_to_u32(ip), qnext, flags); } mem::swap(qcur, qnext); } // Now we set flags for immediately after the current byte. Since start // states are processed separately, and are the only states that can // have the StartText flag set, we therefore only need to worry about // the StartLine flag here. // // We do also keep track of whether this DFA state contains a NFA state // that is a matching state. This is precisely how we delay the DFA // matching by one byte in order to process the special EOF sentinel // byte. Namely, if this DFA state containing a matching NFA state, // then it is the *next* DFA state that is marked as a match. let mut empty_flags = EmptyFlags::default(); let mut state_flags = StateFlags::default(); empty_flags.start_line = b.as_byte().map_or(false, |b| b == b'\n'); if b.is_ascii_word() { state_flags.set_word(); } // Now follow all epsilon transitions again, but only after consuming // the current byte. qnext.clear(); for &ip in &*qcur { match self.prog[ip as usize] { // These states never happen in a byte-based program. Char(_) | Ranges(_) => unreachable!(), // These states are handled when following epsilon transitions. Save(_) | Split(_) | EmptyLook(_) => {} Match(_) => { state_flags.set_match(); if !self.continue_past_first_match() { break; } else if self.prog.matches.len() > 1 && !qnext.contains(ip as usize) { // If we are continuing on to find other matches, // then keep a record of the match states we've seen. qnext.insert(ip); } } Bytes(ref inst) => { if b.as_byte().map_or(false, |b| inst.matches(b)) { self.follow_epsilons( inst.goto as InstPtr, qnext, empty_flags); } } } } let cache = if b.is_eof() && self.prog.matches.len() > 1 { // If we're processing the last byte of the input and we're // matching a regex set, then make the next state contain the // previous states transitions. We do this so that the main // matching loop can extract all of the match instructions. mem::swap(qcur, qnext); // And don't cache this state because it's totally bunk. false } else { true }; // We've now built up the set of NFA states that ought to comprise the // next DFA state, so try to find it in the cache, and if it doesn't // exist, cache it. // // N.B. We pass `&mut si` here because the cache may clear itself if // it has gotten too full. When that happens, the location of the // current state may change. let mut next = match self.cached_state( qnext, state_flags, Some(&mut si), ) { None => return None, Some(next) => next, }; if (self.start & !STATE_START) == next { // Start states can never be match states since all matches are // delayed by one byte. debug_assert!(!self.state(next).flags().is_match()); next = self.start_ptr(next); } if next <= STATE_MAX && self.state(next).flags().is_match() { next |= STATE_MATCH; } debug_assert!(next != STATE_UNKNOWN); // And now store our state in the current state's next list. if cache { let cls = self.byte_class(b); self.cache.trans.set_next(si, cls, next); } Some(next) } /// Follows the epsilon transitions starting at (and including) `ip`. The /// resulting states are inserted into the ordered set `q`. /// /// Conditional epsilon transitions (i.e., empty width assertions) are only /// followed if they are satisfied by the given flags, which should /// represent the flags set at the current location in the input. /// /// If the current location corresponds to the empty string, then only the /// end line and/or end text flags may be set. If the current location /// corresponds to a real byte in the input, then only the start line /// and/or start text flags may be set. /// /// As an exception to the above, when finding the initial state, any of /// the above flags may be set: /// /// If matching starts at the beginning of the input, then start text and /// start line should be set. If the input is empty, then end text and end /// line should also be set. /// /// If matching starts after the beginning of the input, then only start /// line should be set if the preceding byte is `\n`. End line should never /// be set in this case. (Even if the proceding byte is a `\n`, it will /// be handled in a subsequent DFA state.) fn follow_epsilons( &mut self, ip: InstPtr, q: &mut SparseSet, flags: EmptyFlags, ) { use prog::Inst::*; use prog::EmptyLook::*; // We need to traverse the NFA to follow epsilon transitions, so avoid // recursion with an explicit stack. self.cache.stack.push(ip); while let Some(mut ip) = self.cache.stack.pop() { // Try to munch through as many states as possible without // pushes/pops to the stack. loop { // Don't visit states we've already added. if q.contains(ip as usize) { break; } q.insert(ip as usize); match self.prog[ip as usize] { Char(_) | Ranges(_) => unreachable!(), Match(_) | Bytes(_) => { break; } EmptyLook(ref inst) => { // Only follow empty assertion states if our flags // satisfy the assertion. match inst.look { StartLine if flags.start_line => { ip = inst.goto as InstPtr; } EndLine if flags.end_line => { ip = inst.goto as InstPtr; } StartText if flags.start => { ip = inst.goto as InstPtr; } EndText if flags.end => { ip = inst.goto as InstPtr; } WordBoundaryAscii if flags.word_boundary => { ip = inst.goto as InstPtr; } NotWordBoundaryAscii if flags.not_word_boundary => { ip = inst.goto as InstPtr; } WordBoundary if flags.word_boundary => { ip = inst.goto as InstPtr; } NotWordBoundary if flags.not_word_boundary => { ip = inst.goto as InstPtr; } StartLine | EndLine | StartText | EndText | WordBoundaryAscii | NotWordBoundaryAscii | WordBoundary | NotWordBoundary => { break; } } } Save(ref inst) => { ip = inst.goto as InstPtr; } Split(ref inst) => { self.cache.stack.push(inst.goto2 as InstPtr); ip = inst.goto1 as InstPtr; } } } } } /// Find a previously computed state matching the given set of instructions /// and is_match bool. /// /// The given set of instructions should represent a single state in the /// NFA along with all states reachable without consuming any input. /// /// The is_match bool should be true if and only if the preceding DFA state /// contains an NFA matching state. The cached state produced here will /// then signify a match. (This enables us to delay a match by one byte, /// in order to account for the EOF sentinel byte.) /// /// If the cache is full, then it is wiped before caching a new state. /// /// The current state should be specified if it exists, since it will need /// to be preserved if the cache clears itself. (Start states are /// always saved, so they should not be passed here.) It takes a mutable /// pointer to the index because if the cache is cleared, the state's /// location may change. fn cached_state( &mut self, q: &SparseSet, mut state_flags: StateFlags, current_state: Option<&mut StatePtr>, ) -> Option<StatePtr> { // If we couldn't come up with a non-empty key to represent this state, // then it is dead and can never lead to a match. // // Note that inst_flags represent the set of empty width assertions // in q. We use this as an optimization in exec_byte to determine when // we should follow epsilon transitions at the empty string preceding // the current byte. let key = match self.cached_state_key(q, &mut state_flags) { None => return Some(STATE_DEAD), Some(v) => v, }; // In the cache? Cool. Done. if let Some(&si) = self.cache.compiled.get(&key) { return Some(si); } // If the cache has gotten too big, wipe it. if self.approximate_size() > self.prog.dfa_size_limit && !self.clear_cache_and_save(current_state) { // Ooops. DFA is giving up. return None; } // Allocate room for our state and add it. self.add_state(key) } /// Produces a key suitable for describing a state in the DFA cache. /// /// The key invariant here is that equivalent keys are produced for any two /// sets of ordered NFA states (and toggling of whether the previous NFA /// states contain a match state) that do not discriminate a match for any /// input. /// /// Specifically, q should be an ordered set of NFA states and is_match /// should be true if and only if the previous NFA states contained a match /// state. fn cached_state_key( &mut self, q: &SparseSet, state_flags: &mut StateFlags, ) -> Option<State> { use prog::Inst::*; // We need to build up enough information to recognize pre-built states // in the DFA. Generally speaking, this includes every instruction // except for those which are purely epsilon transitions, e.g., the // Save and Split instructions. // // Empty width assertions are also epsilon transitions, but since they // are conditional, we need to make them part of a state's key in the // cache. // Reserve 1 byte for flags. let mut insts = vec![0]; let mut prev = 0; for &ip in q { let ip = usize_to_u32(ip); match self.prog[ip as usize] { Char(_) | Ranges(_) => unreachable!(), Save(_) | Split(_) => {} Bytes(_) => push_inst_ptr(&mut insts, &mut prev, ip), EmptyLook(_) => { state_flags.set_empty(); push_inst_ptr(&mut insts, &mut prev, ip) } Match(_) => { push_inst_ptr(&mut insts, &mut prev, ip); if !self.continue_past_first_match() { break; } } } } // If we couldn't transition to any other instructions and we didn't // see a match when expanding NFA states previously, then this is a // dead state and no amount of additional input can transition out // of this state. if insts.len() == 1 && !state_flags.is_match() { None } else { let StateFlags(f) = *state_flags; insts[0] = f; Some(State { data: insts.into_boxed_slice() }) } } /// Clears the cache, but saves and restores current_state if it is not /// none. /// /// The current state must be provided here in case its location in the /// cache changes. /// /// This returns false if the cache is not cleared and the DFA should /// give up. fn clear_cache_and_save( &mut self, current_state: Option<&mut StatePtr>, ) -> bool { if self.cache.states.is_empty() { // Nothing to clear... return true; } match current_state { None => self.clear_cache(), Some(si) => { let cur = self.state(*si).clone(); if !self.clear_cache() { return false; } // The unwrap is OK because we just cleared the cache and // therefore know that the next state pointer won't exceed // STATE_MAX. *si = self.restore_state(cur).unwrap(); true } } } /// Wipes the state cache, but saves and restores the current start state. /// /// This returns false if the cache is not cleared and the DFA should /// give up. fn clear_cache(&mut self) -> bool { // Bail out of the DFA if we're moving too "slowly." // A heuristic from RE2: assume the DFA is too slow if it is processing // 10 or fewer bytes per state. // Additionally, we permit the cache to be flushed a few times before // caling it quits. let nstates = self.cache.states.len(); if self.cache.flush_count >= 3 && self.at >= self.last_cache_flush && (self.at - self.last_cache_flush) <= 10 * nstates { return false; } // Update statistics tracking cache flushes. self.last_cache_flush = self.at; self.cache.flush_count += 1; // OK, actually flush the cache. let start = self.state(self.start & !STATE_START).clone(); let last_match = if self.last_match_si <= STATE_MAX { Some(self.state(self.last_match_si).clone()) } else { None }; self.cache.reset_size(); self.cache.trans.clear(); self.cache.states.clear(); self.cache.compiled.clear(); for s in &mut self.cache.start_states { *s = STATE_UNKNOWN; } // The unwraps are OK because we just cleared the cache and therefore // know that the next state pointer won't exceed STATE_MAX. let start_ptr = self.restore_state(start).unwrap(); self.start = self.start_ptr(start_ptr); if let Some(last_match) = last_match { self.last_match_si = self.restore_state(last_match).unwrap(); } true } /// Restores the given state back into the cache, and returns a pointer /// to it. fn restore_state(&mut self, state: State) -> Option<StatePtr> { // If we've already stored this state, just return a pointer to it. // None will be the wiser. if let Some(&si) = self.cache.compiled.get(&state) { return Some(si); } self.add_state(state) } /// Returns the next state given the current state si and current byte /// b. {qcur,qnext} are used as scratch space for storing ordered NFA /// states. /// /// This tries to fetch the next state from the cache, but if that fails, /// it computes the next state, caches it and returns a pointer to it. /// /// The pointer can be to a real state, or it can be STATE_DEAD. /// STATE_UNKNOWN cannot be returned. /// /// None is returned if a new state could not be allocated (i.e., the DFA /// ran out of space and thinks it's running too slowly). fn next_state( &mut self, qcur: &mut SparseSet, qnext: &mut SparseSet, si: StatePtr, b: Byte, ) -> Option<StatePtr> { if si == STATE_DEAD { return Some(STATE_DEAD); } match self.cache.trans.next(si, self.byte_class(b)) { STATE_UNKNOWN => self.exec_byte(qcur, qnext, si, b), STATE_QUIT => None, STATE_DEAD => Some(STATE_DEAD), nsi => Some(nsi), } } /// Computes and returns the start state, where searching begins at /// position `at` in `text`. If the state has already been computed, /// then it is pulled from the cache. If the state hasn't been cached, /// then it is computed, cached and a pointer to it is returned. /// /// This may return STATE_DEAD but never STATE_UNKNOWN. #[inline(always)] // reduces constant overhead fn start_state( &mut self, q: &mut SparseSet, empty_flags: EmptyFlags, state_flags: StateFlags, ) -> Option<StatePtr> { // Compute an index into our cache of start states based on the set // of empty/state flags set at the current position in the input. We // don't use every flag since not all flags matter. For example, since // matches are delayed by one byte, start states can never be match // states. let flagi = { (((empty_flags.start as u8) << 0) | ((empty_flags.end as u8) << 1) | ((empty_flags.start_line as u8) << 2) | ((empty_flags.end_line as u8) << 3) | ((empty_flags.word_boundary as u8) << 4) | ((empty_flags.not_word_boundary as u8) << 5) | ((state_flags.is_word() as u8) << 6)) as usize }; match self.cache.start_states[flagi] { STATE_UNKNOWN => {} STATE_DEAD => return Some(STATE_DEAD), si => return Some(si), } q.clear(); let start = usize_to_u32(self.prog.start); self.follow_epsilons(start, q, empty_flags); // Start states can never be match states because we delay every match // by one byte. Given an empty string and an empty match, the match // won't actually occur until the DFA processes the special EOF // sentinel byte. let sp = match self.cached_state(q, state_flags, None) { None => return None, Some(sp) => self.start_ptr(sp), }; self.cache.start_states[flagi] = sp; Some(sp) } /// Computes the set of starting flags for the given position in text. /// /// This should only be used when executing the DFA forwards over the /// input. fn start_flags(&self, text: &[u8], at: usize) -> (EmptyFlags, StateFlags) { let mut empty_flags = EmptyFlags::default(); let mut state_flags = StateFlags::default(); empty_flags.start = at == 0; empty_flags.end = text.is_empty(); empty_flags.start_line = at == 0 || text[at - 1] == b'\n'; empty_flags.end_line = text.is_empty(); let is_word_last = at > 0 && Byte::byte(text[at - 1]).is_ascii_word(); let is_word = at < text.len() && Byte::byte(text[at]).is_ascii_word(); if is_word_last { state_flags.set_word(); } if is_word == is_word_last { empty_flags.not_word_boundary = true; } else { empty_flags.word_boundary = true; } (empty_flags, state_flags) } /// Computes the set of starting flags for the given position in text. /// /// This should only be used when executing the DFA in reverse over the /// input. fn start_flags_reverse( &self, text: &[u8], at: usize, ) -> (EmptyFlags, StateFlags) { let mut empty_flags = EmptyFlags::default(); let mut state_flags = StateFlags::default(); empty_flags.start = at == text.len(); empty_flags.end = text.is_empty(); empty_flags.start_line = at == text.len() || text[at] == b'\n'; empty_flags.end_line = text.is_empty(); let is_word_last = at < text.len() && Byte::byte(text[at]).is_ascii_word(); let is_word = at > 0 && Byte::byte(text[at - 1]).is_ascii_word(); if is_word_last { state_flags.set_word(); } if is_word == is_word_last { empty_flags.not_word_boundary = true; } else { empty_flags.word_boundary = true; } (empty_flags, state_flags) } /// Returns a reference to a State given a pointer to it. fn state(&self, si: StatePtr) -> &State { &self.cache.states[si as usize / self.num_byte_classes()] } /// Adds the given state to the DFA. /// /// This allocates room for transitions out of this state in /// self.cache.trans. The transitions can be set with the returned /// StatePtr. /// /// If None is returned, then the state limit was reached and the DFA /// should quit. fn add_state(&mut self, state: State) -> Option<StatePtr> { // This will fail if the next state pointer exceeds STATE_PTR. In // practice, the cache limit will prevent us from ever getting here, // but maybe callers will set the cache size to something ridiculous... let si = match self.cache.trans.add() { None => return None, Some(si) => si, }; // If the program has a Unicode word boundary, then set any transitions // for non-ASCII bytes to STATE_QUIT. If the DFA stumbles over such a // transition, then it will quit and an alternative matching engine // will take over. if self.prog.has_unicode_word_boundary { for b in 128..256 { let cls = self.byte_class(Byte::byte(b as u8)); self.cache.trans.set_next(si, cls, STATE_QUIT); } } // Finally, put our actual state on to our heap of states and index it // so we can find it later. self.cache.size += self.cache.trans.state_heap_size() + (2 * state.data.len()) + (2 * mem::size_of::<State>()) + mem::size_of::<StatePtr>(); self.cache.states.push(state.clone()); self.cache.compiled.insert(state, si); // Transition table and set of states and map should all be in sync. debug_assert!(self.cache.states.len() == self.cache.trans.num_states()); debug_assert!(self.cache.states.len() == self.cache.compiled.len()); Some(si) } /// Quickly finds the next occurrence of any literal prefixes in the regex. /// If there are no literal prefixes, then the current position is /// returned. If there are literal prefixes and one could not be found, /// then None is returned. /// /// This should only be called when the DFA is in a start state. fn prefix_at(&self, text: &[u8], at: usize) -> Option<usize> { self.prog.prefixes.find(&text[at..]).map(|(s, _)| at + s) } /// Returns the number of byte classes required to discriminate transitions /// in each state. /// /// invariant: num_byte_classes() == len(State.next) fn num_byte_classes(&self) -> usize { // We add 1 to account for the special EOF byte. (self.prog.byte_classes[255] as usize + 1) + 1 } /// Given an input byte or the special EOF sentinel, return its /// corresponding byte class. #[inline(always)] fn byte_class(&self, b: Byte) -> usize { match b.as_byte() { None => self.num_byte_classes() - 1, Some(b) => self.u8_class(b), } } /// Like byte_class, but explicitly for u8s. #[inline(always)] fn u8_class(&self, b: u8) -> usize { self.prog.byte_classes[b as usize] as usize } /// Returns true if the DFA should continue searching past the first match. /// /// Leftmost first semantics in the DFA are preserved by not following NFA /// transitions after the first match is seen. /// /// On occasion, we want to avoid leftmost first semantics to find either /// the longest match (for reverse search) or all possible matches (for /// regex sets). fn continue_past_first_match(&self) -> bool { self.prog.is_reverse || self.prog.matches.len() > 1 } /// Returns true if there is a prefix we can quickly search for. fn has_prefix(&self) -> bool { !self.prog.is_reverse && !self.prog.prefixes.is_empty() && !self.prog.is_anchored_start } /// Sets the STATE_START bit in the given state pointer if and only if /// we have a prefix to scan for. /// /// If there's no prefix, then it's a waste to treat the start state /// specially. fn start_ptr(&self, si: StatePtr) -> StatePtr { if self.has_prefix() { si | STATE_START } else { si } } /// Approximate size returns the approximate heap space currently used by /// the DFA. It is used to determine whether the DFA's state cache needs to /// be wiped. Namely, it is possible that for certain regexes on certain /// inputs, a new state could be created for every byte of input. (This is /// bad for memory use, so we bound it with a cache.) fn approximate_size(&self) -> usize { self.cache.size + self.prog.approximate_size() } } impl Transitions { /// Create a new transition table. /// /// The number of byte classes corresponds to the stride. Every state will /// have `num_byte_classes` slots for transitions. fn new(num_byte_classes: usize) -> Transitions { Transitions { table: vec![], num_byte_classes: num_byte_classes, } } /// Returns the total number of states currently in this table. fn num_states(&self) -> usize { self.table.len() / self.num_byte_classes } /// Allocates room for one additional state and returns a pointer to it. /// /// If there's no more room, None is returned. fn add(&mut self) -> Option<StatePtr> { let si = self.table.len(); if si > STATE_MAX as usize { return None; } self.table.extend(repeat(STATE_UNKNOWN).take(self.num_byte_classes)); Some(usize_to_u32(si)) } /// Clears the table of all states. fn clear(&mut self) { self.table.clear(); } /// Sets the transition from (si, cls) to next. fn set_next(&mut self, si: StatePtr, cls: usize, next: StatePtr) { self.table[si as usize + cls] = next; } /// Returns the transition corresponding to (si, cls). fn next(&self, si: StatePtr, cls: usize) -> StatePtr { self.table[si as usize + cls] } /// The heap size, in bytes, of a single state in the transition table. fn state_heap_size(&self) -> usize { self.num_byte_classes * mem::size_of::<StatePtr>() } /// Like `next`, but uses unchecked access and is therefore unsafe. unsafe fn next_unchecked(&self, si: StatePtr, cls: usize) -> StatePtr { debug_assert!((si as usize) < self.table.len()); debug_assert!(cls < self.num_byte_classes); *self.table.get_unchecked(si as usize + cls) } } impl StateFlags { fn is_match(&self) -> bool { self.0 & 0b0000000_1 > 0 } fn set_match(&mut self) { self.0 |= 0b0000000_1; } fn is_word(&self) -> bool { self.0 & 0b000000_1_0 > 0 } fn set_word(&mut self) { self.0 |= 0b000000_1_0; } fn has_empty(&self) -> bool { self.0 & 0b00000_1_00 > 0 } fn set_empty(&mut self) { self.0 |= 0b00000_1_00; } } impl Byte { fn byte(b: u8) -> Self { Byte(b as u16) } fn eof() -> Self { Byte(256) } fn is_eof(&self) -> bool { self.0 == 256 } fn is_ascii_word(&self) -> bool { let b = match self.as_byte() { None => return false, Some(b) => b, }; match b { b'A'...b'Z' | b'a'...b'z' | b'0'...b'9' | b'_' => true, _ => false, } } fn as_byte(&self) -> Option<u8> { if self.is_eof() { None } else { Some(self.0 as u8) } } } impl fmt::Debug for State { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let ips: Vec<usize> = self.inst_ptrs().collect(); f.debug_struct("State") .field("flags", &self.flags()) .field("insts", &ips) .finish() } } impl fmt::Debug for Transitions { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut fmtd = f.debug_map(); for si in 0..self.num_states() { let s = si * self.num_byte_classes; let e = s + self.num_byte_classes; fmtd.entry(&si.to_string(), &TransitionsRow(&self.table[s..e])); } fmtd.finish() } } struct TransitionsRow<'a>(&'a [StatePtr]); impl<'a> fmt::Debug for TransitionsRow<'a> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut fmtd = f.debug_map(); for (b, si) in self.0.iter().enumerate() { match *si { STATE_UNKNOWN => {} STATE_DEAD => { fmtd.entry(&vb(b as usize), &"DEAD"); } si => { fmtd.entry(&vb(b as usize), &si.to_string()); } } } fmtd.finish() } } impl fmt::Debug for StateFlags { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("StateFlags") .field("is_match", &self.is_match()) .field("is_word", &self.is_word()) .field("has_empty", &self.has_empty()) .finish() } } /// Helper function for formatting a byte as a nice-to-read escaped string. fn vb(b: usize) -> String { use std::ascii::escape_default; if b > ::std::u8::MAX as usize { "EOF".to_owned() } else { let escaped = escape_default(b as u8).collect::<Vec<u8>>(); String::from_utf8_lossy(&escaped).into_owned() } } fn usize_to_u32(n: usize) -> u32 { if (n as u64) > (::std::u32::MAX as u64) { panic!("BUG: {} is too big to fit into u32", n) } n as u32 } #[allow(dead_code)] // useful for debugging fn show_state_ptr(si: StatePtr) -> String { let mut s = format!("{:?}", si & STATE_MAX); if si == STATE_UNKNOWN { s = format!("{} (unknown)", s); } if si == STATE_DEAD { s = format!("{} (dead)", s); } if si == STATE_QUIT { s = format!("{} (quit)", s); } if si & STATE_START > 0 { s = format!("{} (start)", s); } if si & STATE_MATCH > 0 { s = format!("{} (match)", s); } s } /// https://developers.google.com/protocol-buffers/docs/encoding#varints fn write_vari32(data: &mut Vec<u8>, n: i32) { let mut un = (n as u32) << 1; if n < 0 { un = !un; } write_varu32(data, un) } /// https://developers.google.com/protocol-buffers/docs/encoding#varints fn read_vari32(data: &[u8]) -> (i32, usize) { let (un, i) = read_varu32(data); let mut n = (un >> 1) as i32; if un & 1 != 0 { n = !n; } (n, i) } /// https://developers.google.com/protocol-buffers/docs/encoding#varints fn write_varu32(data: &mut Vec<u8>, mut n: u32) { while n >= 0b1000_0000 { data.push((n as u8) | 0b1000_0000); n >>= 7; } data.push(n as u8); } /// https://developers.google.com/protocol-buffers/docs/encoding#varints fn read_varu32(data: &[u8]) -> (u32, usize) { let mut n: u32 = 0; let mut shift: u32 = 0; for (i, &b) in data.iter().enumerate() { if b < 0b1000_0000 { return (n | ((b as u32) << shift), i + 1); } n |= ((b as u32) & 0b0111_1111) << shift; shift += 7; } (0, 0) } #[cfg(test)] mod tests { extern crate rand; use quickcheck::{QuickCheck, StdGen, quickcheck}; use super::{ StateFlags, State, push_inst_ptr, write_varu32, read_varu32, write_vari32, read_vari32, }; #[test] fn prop_state_encode_decode() { fn p(ips: Vec<u32>, flags: u8) -> bool { let mut data = vec![flags]; let mut prev = 0; for &ip in ips.iter() { push_inst_ptr(&mut data, &mut prev, ip); } let state = State { data: data.into_boxed_slice() }; let expected: Vec<usize> = ips.into_iter().map(|ip| ip as usize).collect(); let got: Vec<usize> = state.inst_ptrs().collect(); expected == got && state.flags() == StateFlags(flags) } QuickCheck::new() .gen(StdGen::new(self::rand::thread_rng(), 10_000)) .quickcheck(p as fn(Vec<u32>, u8) -> bool); } #[test] fn prop_read_write_u32() { fn p(n: u32) -> bool { let mut buf = vec![]; write_varu32(&mut buf, n); let (got, nread) = read_varu32(&buf); nread == buf.len() && got == n } quickcheck(p as fn(u32) -> bool); } #[test] fn prop_read_write_i32() { fn p(n: i32) -> bool { let mut buf = vec![]; write_vari32(&mut buf, n); let (got, nread) = read_vari32(&buf); nread == buf.len() && got == n } quickcheck(p as fn(i32) -> bool); } }