1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
use core::ptr;
use core::ops::{FnMut, Deref};
use key::{SecretKey, PublicKey};
use ffi::{self, CPtr};
use secp256k1_sys::types::{c_int, c_uchar, c_void};
#[derive(Copy, Clone)]
pub struct SharedSecret {
data: [u8; 256],
len: usize,
}
impl_raw_debug!(SharedSecret);
impl_from_array_len!(SharedSecret, 256, (16 20 28 32 48 64 96 128 256));
impl SharedSecret {
pub(crate) fn empty() -> SharedSecret {
SharedSecret {
data: [0u8; 256],
len: 0,
}
}
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
self.data.as_mut_ptr()
}
pub fn capacity(&self) -> usize {
self.data.len()
}
pub fn len(&self) -> usize {
self.len
}
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
pub(crate) fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.data.len());
self.len = len;
}
}
impl PartialEq for SharedSecret {
fn eq(&self, other: &SharedSecret) -> bool {
self.as_ref() == other.as_ref()
}
}
impl AsRef<[u8]> for SharedSecret {
fn as_ref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl Deref for SharedSecret {
type Target = [u8];
fn deref(&self) -> &[u8] {
&self.data[..self.len]
}
}
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
ptr::copy_nonoverlapping(x, output, 32);
ptr::copy_nonoverlapping(y, output.offset(32), 32);
1
}
impl SharedSecret {
#[inline]
pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
let mut ss = SharedSecret::empty();
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
ss.get_data_mut_ptr(),
point.as_c_ptr(),
scalar.as_c_ptr(),
ffi::secp256k1_ecdh_hash_function_default,
ptr::null_mut(),
)
};
debug_assert_eq!(res, 1);
ss.set_len(32);
ss
}
pub fn new_with_hash<F>(point: &PublicKey, scalar: &SecretKey, mut hash_function: F) -> SharedSecret
where F: FnMut([u8; 32], [u8; 32]) -> SharedSecret {
let mut xy = [0u8; 64];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
xy.as_mut_ptr(),
point.as_ptr(),
scalar.as_ptr(),
Some(c_callback),
ptr::null_mut(),
)
};
debug_assert_eq!(res, 1);
let mut x = [0u8; 32];
let mut y = [0u8; 32];
x.copy_from_slice(&xy[..32]);
y.copy_from_slice(&xy[32..]);
hash_function(x, y)
}
}
#[cfg(test)]
mod tests {
use rand::thread_rng;
use super::SharedSecret;
use super::super::Secp256k1;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
fn ecdh() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new(&pk1, &sk2);
let sec2 = SharedSecret::new(&pk2, &sk1);
let sec_odd = SharedSecret::new(&pk1, &sk1);
assert_eq!(sec1, sec2);
assert!(sec_odd != sec2);
}
#[test]
fn ecdh_with_hash() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new_with_hash(&pk1, &sk2, |x,_| x.into());
let sec2 = SharedSecret::new_with_hash(&pk2, &sk1, |x,_| x.into());
let sec_odd = SharedSecret::new_with_hash(&pk1, &sk1, |x,_| x.into());
assert_eq!(sec1, sec2);
assert_ne!(sec_odd, sec2);
}
#[test]
fn ecdh_with_hash_callback() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let expect_result: [u8; 64] = [123; 64];
let mut x_out = [0u8; 32];
let mut y_out = [0u8; 32];
let result = SharedSecret::new_with_hash(&pk1, &sk1, |x, y| {
x_out = x;
y_out = y;
expect_result.into()
});
assert_eq!(&expect_result[..], &result[..]);
assert_ne!(x_out, [0u8; 32]);
assert_ne!(y_out, [0u8; 32]);
}
#[test]
fn test_c_callback() {
let x = [5u8; 32];
let y = [7u8; 32];
let mut output = [0u8; 64];
let res = unsafe { super::c_callback(output.as_mut_ptr(), x.as_ptr(), y.as_ptr(), ::ptr::null_mut()) };
assert_eq!(res, 1);
let mut new_x = [0u8; 32];
let mut new_y = [0u8; 32];
new_x.copy_from_slice(&output[..32]);
new_y.copy_from_slice(&output[32..]);
assert_eq!(x, new_x);
assert_eq!(y, new_y);
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::thread_rng;
use test::{Bencher, black_box};
use super::SharedSecret;
use super::super::Secp256k1;
#[bench]
pub fn bench_ecdh(bh: &mut Bencher) {
let s = Secp256k1::signing_only();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
bh.iter( || {
let res = SharedSecret::new(&pk, &sk);
black_box(res);
});
}
}