1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
// Bitcoin secp256k1 bindings
// Written in 2014 by
//   Dawid Ciężarkiewicz
//   Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # Secp256k1
//! Rust bindings for Pieter Wuille's secp256k1 library, which is used for
//! fast and accurate manipulation of ECDSA signatures on the secp256k1
//! curve. Such signatures are used extensively by the Bitcoin network
//! and its derivatives.
//!
//! To minimize dependencies, some functions are feature-gated. To generate
//! random keys or to re-randomize a context object, compile with the "rand"
//! feature. To de/serialize objects with serde, compile with "serde".
//!
//! Where possible, the bindings use the Rust type system to ensure that
//! API usage errors are impossible. For example, the library uses context
//! objects that contain precomputation tables which are created on object
//! construction. Since this is a slow operation (10+ milliseconds, vs ~50
//! microseconds for typical crypto operations, on a 2.70 Ghz i7-6820HQ)
//! the tables are optional, giving a performance boost for users who only
//! care about signing, only care about verification, or only care about
//! parsing. In the upstream library, if you attempt to sign a message using
//! a context that does not support this, it will trigger an assertion
//! failure and terminate the program. In `rust-secp256k1`, this is caught
//! at compile-time; in fact, it is impossible to compile code that will
//! trigger any assertion failures in the upstream library.
//!
//! ```rust
//! # #[cfg(all(feature="rand", feature="bitcoin_hashes"))] {
//! use secp256k1::rand::rngs::OsRng;
//! use secp256k1::{Secp256k1, Message};
//! use secp256k1::bitcoin_hashes::sha256;
//!
//! let secp = Secp256k1::new();
//! let mut rng = OsRng::new().expect("OsRng");
//! let (secret_key, public_key) = secp.generate_keypair(&mut rng);
//! let message = Message::from_hashed_data::<sha256::Hash>("Hello World!".as_bytes());
//!
//! let sig = secp.sign(&message, &secret_key);
//! assert!(secp.verify(&message, &sig, &public_key).is_ok());
//! # }
//! ```
//!
//! The above code requires `rust-secp256k1` to be compiled with the `rand` and `bitcoin_hashes`
//! feature enabled, to get access to [`generate_keypair`](struct.Secp256k1.html#method.generate_keypair)
//! Alternately, keys and messages can be parsed from slices, like
//!
//! ```rust
//! use self::secp256k1::{Secp256k1, Message, SecretKey, PublicKey};
//!
//! let secp = Secp256k1::new();
//! let secret_key = SecretKey::from_slice(&[0xcd; 32]).expect("32 bytes, within curve order");
//! let public_key = PublicKey::from_secret_key(&secp, &secret_key);
//! // This is unsafe unless the supplied byte slice is the output of a cryptographic hash function.
//! // See the above example for how to use this library together with bitcoin_hashes.
//! let message = Message::from_slice(&[0xab; 32]).expect("32 bytes");
//!
//! let sig = secp.sign(&message, &secret_key);
//! assert!(secp.verify(&message, &sig, &public_key).is_ok());
//! ```
//!
//! Users who only want to verify signatures can use a cheaper context, like so:
//!
//! ```rust
//! use secp256k1::{Secp256k1, Message, Signature, PublicKey};
//!
//! let secp = Secp256k1::verification_only();
//!
//! let public_key = PublicKey::from_slice(&[
//!     0x02,
//!     0xc6, 0x6e, 0x7d, 0x89, 0x66, 0xb5, 0xc5, 0x55,
//!     0xaf, 0x58, 0x05, 0x98, 0x9d, 0xa9, 0xfb, 0xf8,
//!     0xdb, 0x95, 0xe1, 0x56, 0x31, 0xce, 0x35, 0x8c,
//!     0x3a, 0x17, 0x10, 0xc9, 0x62, 0x67, 0x90, 0x63,
//! ]).expect("public keys must be 33 or 65 bytes, serialized according to SEC 2");
//!
//! let message = Message::from_slice(&[
//!     0xaa, 0xdf, 0x7d, 0xe7, 0x82, 0x03, 0x4f, 0xbe,
//!     0x3d, 0x3d, 0xb2, 0xcb, 0x13, 0xc0, 0xcd, 0x91,
//!     0xbf, 0x41, 0xcb, 0x08, 0xfa, 0xc7, 0xbd, 0x61,
//!     0xd5, 0x44, 0x53, 0xcf, 0x6e, 0x82, 0xb4, 0x50,
//! ]).expect("messages must be 32 bytes and are expected to be hashes");
//!
//! let sig = Signature::from_compact(&[
//!     0xdc, 0x4d, 0xc2, 0x64, 0xa9, 0xfe, 0xf1, 0x7a,
//!     0x3f, 0x25, 0x34, 0x49, 0xcf, 0x8c, 0x39, 0x7a,
//!     0xb6, 0xf1, 0x6f, 0xb3, 0xd6, 0x3d, 0x86, 0x94,
//!     0x0b, 0x55, 0x86, 0x82, 0x3d, 0xfd, 0x02, 0xae,
//!     0x3b, 0x46, 0x1b, 0xb4, 0x33, 0x6b, 0x5e, 0xcb,
//!     0xae, 0xfd, 0x66, 0x27, 0xaa, 0x92, 0x2e, 0xfc,
//!     0x04, 0x8f, 0xec, 0x0c, 0x88, 0x1c, 0x10, 0xc4,
//!     0xc9, 0x42, 0x8f, 0xca, 0x69, 0xc1, 0x32, 0xa2,
//! ]).expect("compact signatures are 64 bytes; DER signatures are 68-72 bytes");
//!
//! # #[cfg(not(fuzzing))]
//! assert!(secp.verify(&message, &sig, &public_key).is_ok());
//! ```
//!
//! Observe that the same code using, say [`signing_only`](struct.Secp256k1.html#method.signing_only)
//! to generate a context would simply not compile.
//!

// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![warn(missing_docs)]


#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
#![cfg_attr(all(test, feature = "unstable"), feature(test))]

#[macro_use]
pub extern crate secp256k1_sys;
pub use secp256k1_sys as ffi;

#[cfg(feature = "bitcoin_hashes")] pub extern crate bitcoin_hashes;
#[cfg(all(test, feature = "unstable"))] extern crate test;
#[cfg(any(test, feature = "rand"))] pub extern crate rand;
#[cfg(any(test))] extern crate rand_core;
#[cfg(feature = "serde")] pub extern crate serde;
#[cfg(all(test, feature = "serde"))] extern crate serde_test;
#[cfg(any(test, feature = "rand"))] use rand::Rng;
#[cfg(any(test, feature = "std"))] extern crate core;
#[cfg(all(test, target_arch = "wasm32"))] extern crate wasm_bindgen_test;

use core::{fmt, ptr, str};

#[macro_use]
mod macros;
mod context;
pub mod constants;
pub mod ecdh;
pub mod key;
pub mod schnorrsig;
#[cfg(feature = "recovery")]
pub mod recovery;

pub use key::SecretKey;
pub use key::PublicKey;
pub use context::*;
use core::marker::PhantomData;
use core::ops::Deref;
use core::mem;
use ffi::{CPtr, types::AlignedType};

#[cfg(feature = "global-context")]
pub use context::global::SECP256K1;

#[cfg(feature = "bitcoin_hashes")]
use bitcoin_hashes::Hash;

/// An ECDSA signature
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Signature(ffi::Signature);

/// A DER serialized Signature
#[derive(Copy, Clone)]
pub struct SerializedSignature {
    data: [u8; 72],
    len: usize,
}

impl fmt::Debug for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    fmt::Display::fmt(self, f)
}
}

impl fmt::Display for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
    let sig = self.serialize_der();
    for v in sig.iter() {
        write!(f, "{:02x}", v)?;
    }
    Ok(())
}
}

impl str::FromStr for Signature {
type Err = Error;
fn from_str(s: &str) -> Result<Signature, Error> {
    let mut res = [0; 72];
    match from_hex(s, &mut res) {
        Ok(x) => Signature::from_der(&res[0..x]),
        _ => Err(Error::InvalidSignature),
    }
}
}

/// Trait describing something that promises to be a 32-byte random number; in particular,
/// it has negligible probability of being zero or overflowing the group order. Such objects
/// may be converted to `Message`s without any error paths.
pub trait ThirtyTwoByteHash {
    /// Converts the object into a 32-byte array
    fn into_32(self) -> [u8; 32];
}

#[cfg(feature = "bitcoin_hashes")]
impl ThirtyTwoByteHash for bitcoin_hashes::sha256::Hash {
    fn into_32(self) -> [u8; 32] {
        self.into_inner()
    }
}

#[cfg(feature = "bitcoin_hashes")]
impl ThirtyTwoByteHash for bitcoin_hashes::sha256d::Hash {
    fn into_32(self) -> [u8; 32] {
        self.into_inner()
    }
}

#[cfg(feature = "bitcoin_hashes")]
impl<T: bitcoin_hashes::sha256t::Tag> ThirtyTwoByteHash for bitcoin_hashes::sha256t::Hash<T> {
    fn into_32(self) -> [u8; 32] {
        self.into_inner()
    }
}

impl SerializedSignature {
    /// Get a pointer to the underlying data with the specified capacity.
    pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
        self.data.as_mut_ptr()
    }

    /// Get the capacity of the underlying data buffer.
    pub fn capacity(&self) -> usize {
        self.data.len()
    }

    /// Get the len of the used data.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Set the length of the object.
    pub(crate) fn set_len(&mut self, len: usize) {
        self.len = len;
    }

    /// Convert the serialized signature into the Signature struct.
    /// (This DER deserializes it)
    pub fn to_signature(&self) -> Result<Signature, Error> {
        Signature::from_der(&self)
    }

    /// Create a SerializedSignature from a Signature.
    /// (this DER serializes it)
    pub fn from_signature(sig: &Signature) -> SerializedSignature {
        sig.serialize_der()
    }

    /// Check if the space is zero.
    pub fn is_empty(&self) -> bool { self.len() == 0 }
}

impl Signature {
#[inline]
    /// Converts a DER-encoded byte slice to a signature
    pub fn from_der(data: &[u8]) -> Result<Signature, Error> {
        if data.is_empty() {return Err(Error::InvalidSignature);}

        unsafe {
            let mut ret = ffi::Signature::new();
            if ffi::secp256k1_ecdsa_signature_parse_der(
                ffi::secp256k1_context_no_precomp,
                &mut ret,
                data.as_c_ptr(),
                data.len() as usize,
            ) == 1
            {
                Ok(Signature(ret))
            } else {
                Err(Error::InvalidSignature)
            }
        }
    }

    /// Converts a 64-byte compact-encoded byte slice to a signature
    pub fn from_compact(data: &[u8]) -> Result<Signature, Error> {
        if data.len() != 64 {
            return Err(Error::InvalidSignature)
        }

        unsafe {
            let mut ret = ffi::Signature::new();
            if ffi::secp256k1_ecdsa_signature_parse_compact(
                ffi::secp256k1_context_no_precomp,
                &mut ret,
                data.as_c_ptr(),
            ) == 1
            {
                Ok(Signature(ret))
            } else {
                Err(Error::InvalidSignature)
            }
        }
    }

    /// Converts a "lax DER"-encoded byte slice to a signature. This is basically
    /// only useful for validating signatures in the Bitcoin blockchain from before
    /// 2016. It should never be used in new applications. This library does not
    /// support serializing to this "format"
    pub fn from_der_lax(data: &[u8]) -> Result<Signature, Error> {
        if data.is_empty() {return Err(Error::InvalidSignature);}

        unsafe {
            let mut ret = ffi::Signature::new();
            if ffi::ecdsa_signature_parse_der_lax(
                ffi::secp256k1_context_no_precomp,
                &mut ret,
                data.as_c_ptr(),
                data.len() as usize,
            ) == 1
            {
                Ok(Signature(ret))
            } else {
                Err(Error::InvalidSignature)
            }
        }
    }

    /// Normalizes a signature to a "low S" form. In ECDSA, signatures are
    /// of the form (r, s) where r and s are numbers lying in some finite
    /// field. The verification equation will pass for (r, s) iff it passes
    /// for (r, -s), so it is possible to ``modify'' signatures in transit
    /// by flipping the sign of s. This does not constitute a forgery since
    /// the signed message still cannot be changed, but for some applications,
    /// changing even the signature itself can be a problem. Such applications
    /// require a "strong signature". It is believed that ECDSA is a strong
    /// signature except for this ambiguity in the sign of s, so to accommodate
    /// these applications libsecp256k1 will only accept signatures for which
    /// s is in the lower half of the field range. This eliminates the
    /// ambiguity.
    ///
    /// However, for some systems, signatures with high s-values are considered
    /// valid. (For example, parsing the historic Bitcoin blockchain requires
    /// this.) For these applications we provide this normalization function,
    /// which ensures that the s value lies in the lower half of its range.
    pub fn normalize_s(&mut self) {
        unsafe {
            // Ignore return value, which indicates whether the sig
            // was already normalized. We don't care.
            ffi::secp256k1_ecdsa_signature_normalize(
                ffi::secp256k1_context_no_precomp,
                self.as_mut_c_ptr(),
                self.as_c_ptr(),
            );
        }
    }

    /// Obtains a raw pointer suitable for use with FFI functions
    #[inline]
    pub fn as_ptr(&self) -> *const ffi::Signature {
        &self.0
    }

    /// Obtains a raw mutable pointer suitable for use with FFI functions
    #[inline]
    pub fn as_mut_ptr(&mut self) -> *mut ffi::Signature {
        &mut self.0
    }

    #[inline]
    /// Serializes the signature in DER format
    pub fn serialize_der(&self) -> SerializedSignature {
        let mut ret = SerializedSignature::default();
        let mut len: usize = ret.capacity();
        unsafe {
            let err = ffi::secp256k1_ecdsa_signature_serialize_der(
                ffi::secp256k1_context_no_precomp,
                ret.get_data_mut_ptr(),
                &mut len,
                self.as_c_ptr(),
            );
            debug_assert!(err == 1);
            ret.set_len(len);
        }
        ret
    }

    #[inline]
    /// Serializes the signature in compact format
    pub fn serialize_compact(&self) -> [u8; 64] {
        let mut ret = [0; 64];
        unsafe {
            let err = ffi::secp256k1_ecdsa_signature_serialize_compact(
                ffi::secp256k1_context_no_precomp,
                ret.as_mut_c_ptr(),
                self.as_c_ptr(),
            );
            debug_assert!(err == 1);
        }
        ret
    }
}

impl CPtr for Signature {
    type Target = ffi::Signature;
    fn as_c_ptr(&self) -> *const Self::Target {
        self.as_ptr()
    }

    fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
        self.as_mut_ptr()
    }
}

/// Creates a new signature from a FFI signature
impl From<ffi::Signature> for Signature {
    #[inline]
    fn from(sig: ffi::Signature) -> Signature {
        Signature(sig)
    }
}


#[cfg(feature = "serde")]
impl ::serde::Serialize for Signature {
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            s.collect_str(self)
        } else {
            s.serialize_bytes(&self.serialize_der())
        }

    }
}

#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for Signature {
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<Signature, D::Error> {
        use ::serde::de::Error;
        use str::FromStr;
        if d.is_human_readable() {
            let sl: &str = ::serde::Deserialize::deserialize(d)?;
            Signature::from_str(sl).map_err(D::Error::custom)
        } else {
            let sl: &[u8] = ::serde::Deserialize::deserialize(d)?;
            Signature::from_der(sl).map_err(D::Error::custom)
        }
    }
}

/// A (hashed) message input to an ECDSA signature
pub struct Message([u8; constants::MESSAGE_SIZE]);
impl_array_newtype!(Message, u8, constants::MESSAGE_SIZE);
impl_pretty_debug!(Message);

impl Message {
    /// **If you just want to sign an arbitrary message use `Message::from_hashed_data` instead.**
    ///
    /// Converts a `MESSAGE_SIZE`-byte slice to a message object. **WARNING:** the slice has to be a
    /// cryptographically secure hash of the actual message that's going to be signed. Otherwise
    /// the result of signing isn't a
    /// [secure signature](https://twitter.com/pwuille/status/1063582706288586752).
    #[inline]
    pub fn from_slice(data: &[u8]) -> Result<Message, Error> {
        match data.len() {
            constants::MESSAGE_SIZE => {
                let mut ret = [0; constants::MESSAGE_SIZE];
                ret[..].copy_from_slice(data);
                Ok(Message(ret))
            }
            _ => Err(Error::InvalidMessage)
        }
    }

    /// Constructs a `Message` by hashing `data` with hash algorithm `H`. This requires the feature
    /// `bitcoin_hashes` to be enabled.
    /// ```rust
    /// extern crate bitcoin_hashes;
    /// # extern crate secp256k1;
    /// use secp256k1::Message;
    /// use bitcoin_hashes::sha256;
    /// use bitcoin_hashes::Hash;
    ///
    /// let m1 = Message::from_hashed_data::<sha256::Hash>("Hello world!".as_bytes());
    /// // is equivalent to
    /// let m2 = Message::from(sha256::Hash::hash("Hello world!".as_bytes()));
    ///
    /// assert_eq!(m1, m2);
    /// ```
    #[cfg(feature = "bitcoin_hashes")]
    pub fn from_hashed_data<H: ThirtyTwoByteHash + bitcoin_hashes::Hash>(data: &[u8]) -> Self {
        <H as bitcoin_hashes::Hash>::hash(data).into()
    }
}

impl<T: ThirtyTwoByteHash> From<T> for Message {
    /// Converts a 32-byte hash directly to a message without error paths
    fn from(t: T) -> Message {
        Message(t.into_32())
    }
}

/// An ECDSA error
#[derive(Copy, PartialEq, Eq, Clone, Debug)]
pub enum Error {
    /// Signature failed verification
    IncorrectSignature,
    /// Badly sized message ("messages" are actually fixed-sized digests; see the `MESSAGE_SIZE`
    /// constant)
    InvalidMessage,
    /// Bad public key
    InvalidPublicKey,
    /// Bad signature
    InvalidSignature,
    /// Bad secret key
    InvalidSecretKey,
    /// Bad recovery id
    InvalidRecoveryId,
    /// Invalid tweak for add_*_assign or mul_*_assign
    InvalidTweak,
    /// `tweak_add_check` failed on an xonly public key
    TweakCheckFailed,
    /// Didn't pass enough memory to context creation with preallocated memory
    NotEnoughMemory,
}

impl Error {
    fn as_str(&self) -> &str {
        match *self {
            Error::IncorrectSignature => "secp: signature failed verification",
            Error::InvalidMessage => "secp: message was not 32 bytes (do you need to hash?)",
            Error::InvalidPublicKey => "secp: malformed public key",
            Error::InvalidSignature => "secp: malformed signature",
            Error::InvalidSecretKey => "secp: malformed or out-of-range secret key",
            Error::InvalidRecoveryId => "secp: bad recovery id",
            Error::InvalidTweak => "secp: bad tweak",
            Error::TweakCheckFailed => "secp: xonly_pubkey_tewak_add_check failed",
            Error::NotEnoughMemory => "secp: not enough memory allocated",
        }
    }
}

// Passthrough Debug to Display, since errors should be user-visible
impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        f.write_str(self.as_str())
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {}


/// The secp256k1 engine, used to execute all signature operations
pub struct Secp256k1<C: Context> {
    ctx: *mut ffi::Context,
    phantom: PhantomData<C>,
    size: usize,
}

// The underlying secp context does not contain any references to memory it does not own
unsafe impl<C: Context> Send for Secp256k1<C> {}
// The API does not permit any mutation of `Secp256k1` objects except through `&mut` references
unsafe impl<C: Context> Sync for Secp256k1<C> {}


impl<C: Context> PartialEq for Secp256k1<C> {
    fn eq(&self, _other: &Secp256k1<C>) -> bool { true }
}

impl Default for SerializedSignature {
    fn default() -> SerializedSignature {
        SerializedSignature {
            data: [0u8; 72],
            len: 0,
        }
    }
}

impl PartialEq for SerializedSignature {
    fn eq(&self, other: &SerializedSignature) -> bool {
        self.data[..self.len] == other.data[..other.len]
    }
}

impl AsRef<[u8]> for SerializedSignature {
    fn as_ref(&self) -> &[u8] {
        &self.data[..self.len]
    }
}

impl Deref for SerializedSignature {
    type Target = [u8];
    fn deref(&self) -> &[u8] {
        &self.data[..self.len]
    }
}

impl Eq for SerializedSignature {}

impl<C: Context> Eq for Secp256k1<C> { }

impl<C: Context> Drop for Secp256k1<C> {
    fn drop(&mut self) {
        unsafe {
            ffi::secp256k1_context_preallocated_destroy(self.ctx);
            C::deallocate(self.ctx as _, self.size);
        }
    }
}

impl<C: Context> fmt::Debug for Secp256k1<C> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "<secp256k1 context {:?}, {}>", self.ctx, C::DESCRIPTION)
    }
}

impl<C: Context> Secp256k1<C> {

    /// Getter for the raw pointer to the underlying secp256k1 context. This
    /// shouldn't be needed with normal usage of the library. It enables
    /// extending the Secp256k1 with more cryptographic algorithms outside of
    /// this crate.
    pub fn ctx(&self) -> &*mut ffi::Context {
        &self.ctx
    }

    /// Returns the required memory for a preallocated context buffer in a generic manner(sign/verify/all)
    pub fn preallocate_size_gen() -> usize {
        let word_size = mem::size_of::<AlignedType>();
        let bytes = unsafe { ffi::secp256k1_context_preallocated_size(C::FLAGS) };

        (bytes + word_size - 1) / word_size
    }

    /// (Re)randomizes the Secp256k1 context for cheap sidechannel resistance;
    /// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell. Requires
    /// compilation with "rand" feature.
    #[cfg(any(test, feature = "rand"))]
    pub fn randomize<R: Rng + ?Sized>(&mut self, rng: &mut R) {
        let mut seed = [0; 32];
        rng.fill_bytes(&mut seed);
        self.seeded_randomize(&seed);
    }

    /// (Re)randomizes the Secp256k1 context for cheap sidechannel resistance given 32 bytes of
    /// cryptographically-secure random data;
    /// see comment in libsecp256k1 commit d2275795f by Gregory Maxwell.
    pub fn seeded_randomize(&mut self, seed: &[u8; 32]) {
        unsafe {
            let err = ffi::secp256k1_context_randomize(self.ctx, seed.as_c_ptr());
            // This function cannot fail; it has an error return for future-proofing.
            // We do not expose this error since it is impossible to hit, and we have
            // precedent for not exposing impossible errors (for example in
            // `PublicKey::from_secret_key` where it is impossible to create an invalid
            // secret key through the API.)
            // However, if this DOES fail, the result is potentially weaker side-channel
            // resistance, which is deadly and undetectable, so we take out the entire
            // thread to be on the safe side.
            assert_eq!(err, 1);
        }
    }
}

fn der_length_check(sig: &ffi::Signature, max_len: usize) -> bool {
    let mut ser_ret = [0; 72];
    let mut len: usize = ser_ret.len();
    unsafe {
        let err = ffi::secp256k1_ecdsa_signature_serialize_der(
            ffi::secp256k1_context_no_precomp,
            ser_ret.as_mut_c_ptr(),
            &mut len,
            sig,
        );
        debug_assert!(err == 1);
    }
    len <= max_len
}

fn compact_sig_has_zero_first_bit(sig: &ffi::Signature) -> bool {
    let mut compact = [0; 64];
    unsafe {
        let err = ffi::secp256k1_ecdsa_signature_serialize_compact(
            ffi::secp256k1_context_no_precomp,
            compact.as_mut_c_ptr(),
            sig,
        );
        debug_assert!(err == 1);
    }
    compact[0] < 0x80
}

impl<C: Signing> Secp256k1<C> {

    /// Constructs a signature for `msg` using the secret key `sk` and RFC6979 nonce
    /// Requires a signing-capable context.
    pub fn sign(&self, msg: &Message, sk: &key::SecretKey)
                -> Signature {

        unsafe {
            let mut ret = ffi::Signature::new();
            // We can assume the return value because it's not possible to construct
            // an invalid signature from a valid `Message` and `SecretKey`
            assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_c_ptr(),
                                                 sk.as_c_ptr(), ffi::secp256k1_nonce_function_rfc6979,
                                                 ptr::null()), 1);
            Signature::from(ret)
        }
    }

    fn sign_grind_with_check(
        &self, msg: &Message,
        sk: &key::SecretKey,
        check: impl Fn(&ffi::Signature) -> bool) -> Signature {
            let mut entropy_p : *const ffi::types::c_void = ptr::null();
            let mut counter : u32 = 0;
            let mut extra_entropy = [0u8; 32];
            loop {
                unsafe {
                    let mut ret = ffi::Signature::new();
                    // We can assume the return value because it's not possible to construct
                    // an invalid signature from a valid `Message` and `SecretKey`
                    assert_eq!(ffi::secp256k1_ecdsa_sign(self.ctx, &mut ret, msg.as_c_ptr(),
                                                        sk.as_c_ptr(), ffi::secp256k1_nonce_function_rfc6979,
                                                        entropy_p), 1);
                    if check(&ret) {
                        return Signature::from(ret);
                    }

                    counter += 1;
                    // From 1.32 can use `to_le_bytes` instead
                    let le_counter = counter.to_le();
                    let le_counter_bytes : [u8; 4] = mem::transmute(le_counter);
                    for (i, b) in le_counter_bytes.iter().enumerate() {
                        extra_entropy[i] = *b;
                    }

                    entropy_p = extra_entropy.as_ptr() as *const ffi::types::c_void;

                    // When fuzzing, these checks will usually spinloop forever, so just short-circuit them.
                    #[cfg(fuzzing)]
                    return Signature::from(ret);
                }
            }
    }

    /// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce
    /// and "grinds" the nonce by passing extra entropy if necessary to produce
    /// a signature that is less than 71 - bytes_to_grund bytes. The number
    /// of signing operation performed by this function is exponential in the
    /// number of bytes grinded.
    /// Requires a signing capable context.
    pub fn sign_grind_r(&self, msg: &Message, sk: &key::SecretKey, bytes_to_grind: usize) -> Signature {
        let len_check = |s : &ffi::Signature| der_length_check(s, 71 - bytes_to_grind);
        return self.sign_grind_with_check(msg, sk, len_check);
    }

    /// Constructs a signature for `msg` using the secret key `sk`, RFC6979 nonce
    /// and "grinds" the nonce by passing extra entropy if necessary to produce
    /// a signature that is less than 71 bytes and compatible with the low r
    /// signature implementation of bitcoin core. In average, this function
    /// will perform two signing operations.
    /// Requires a signing capable context.
    pub fn sign_low_r(&self, msg: &Message, sk: &key::SecretKey) -> Signature {
        return self.sign_grind_with_check(msg, sk, compact_sig_has_zero_first_bit)
    }

    /// Generates a random keypair. Convenience function for `key::SecretKey::new`
    /// and `key::PublicKey::from_secret_key`; call those functions directly for
    /// batch key generation. Requires a signing-capable context. Requires compilation
    /// with the "rand" feature.
    #[inline]
    #[cfg(any(test, feature = "rand"))]
    pub fn generate_keypair<R: Rng + ?Sized>(&self, rng: &mut R)
                                    -> (key::SecretKey, key::PublicKey) {
        let sk = key::SecretKey::new(rng);
        let pk = key::PublicKey::from_secret_key(self, &sk);
        (sk, pk)
    }
}

impl<C: Verification> Secp256k1<C> {
    /// Checks that `sig` is a valid ECDSA signature for `msg` using the public
    /// key `pubkey`. Returns `Ok(())` on success. Note that this function cannot
    /// be used for Bitcoin consensus checking since there may exist signatures
    /// which OpenSSL would verify but not libsecp256k1, or vice-versa. Requires a
    /// verify-capable context.
    ///
    /// ```rust
    /// # #[cfg(feature="rand")] {
    /// # use secp256k1::rand::rngs::OsRng;
    /// # use secp256k1::{Secp256k1, Message, Error};
    /// #
    /// # let secp = Secp256k1::new();
    /// # let mut rng = OsRng::new().expect("OsRng");
    /// # let (secret_key, public_key) = secp.generate_keypair(&mut rng);
    /// #
    /// let message = Message::from_slice(&[0xab; 32]).expect("32 bytes");
    /// let sig = secp.sign(&message, &secret_key);
    /// assert_eq!(secp.verify(&message, &sig, &public_key), Ok(()));
    ///
    /// let message = Message::from_slice(&[0xcd; 32]).expect("32 bytes");
    /// assert_eq!(secp.verify(&message, &sig, &public_key), Err(Error::IncorrectSignature));
    /// # }
    /// ```
    #[inline]
    pub fn verify(&self, msg: &Message, sig: &Signature, pk: &key::PublicKey) -> Result<(), Error> {
        unsafe {
            if ffi::secp256k1_ecdsa_verify(self.ctx, sig.as_c_ptr(), msg.as_c_ptr(), pk.as_c_ptr()) == 0 {
                Err(Error::IncorrectSignature)
            } else {
                Ok(())
            }
        }
    }
}

/// Utility function used to parse hex into a target u8 buffer. Returns
/// the number of bytes converted or an error if it encounters an invalid
/// character or unexpected end of string.
fn from_hex(hex: &str, target: &mut [u8]) -> Result<usize, ()> {
    if hex.len() % 2 == 1 || hex.len() > target.len() * 2 {
        return Err(());
    }

    let mut b = 0;
    let mut idx = 0;
    for c in hex.bytes() {
        b <<= 4;
        match c {
            b'A'..=b'F' => b |= c - b'A' + 10,
            b'a'..=b'f' => b |= c - b'a' + 10,
            b'0'..=b'9' => b |= c - b'0',
            _ => return Err(()),
        }
        if (idx & 1) == 1 {
            target[idx / 2] = b;
            b = 0;
        }
        idx += 1;
    }
    Ok(idx / 2)
}


#[cfg(test)]
mod tests {
    use rand::{RngCore, thread_rng};
    use std::str::FromStr;
    use std::marker::PhantomData;

    use key::{SecretKey, PublicKey};
    use super::from_hex;
    use super::constants;
    use super::{Secp256k1, Signature, Message};
    use super::Error::{InvalidMessage, IncorrectSignature, InvalidSignature};
    use ffi::{self, types::AlignedType};
    use context::*;

    #[cfg(target_arch = "wasm32")]
    use wasm_bindgen_test::wasm_bindgen_test as test;

    macro_rules! hex {
        ($hex:expr) => ({
            let mut result = vec![0; $hex.len() / 2];
            from_hex($hex, &mut result).expect("valid hex string");
            result
        });
    }


    #[test]
    fn test_manual_create_destroy() {
        let ctx_full = unsafe { ffi::secp256k1_context_create(AllPreallocated::FLAGS) };
        let ctx_sign = unsafe { ffi::secp256k1_context_create(SignOnlyPreallocated::FLAGS) };
        let ctx_vrfy = unsafe { ffi::secp256k1_context_create(VerifyOnlyPreallocated::FLAGS) };

        let size = 0;
        let full: Secp256k1<AllPreallocated> = Secp256k1{ctx: ctx_full, phantom: PhantomData, size};
        let sign: Secp256k1<SignOnlyPreallocated> = Secp256k1{ctx: ctx_sign, phantom: PhantomData, size};
        let vrfy: Secp256k1<VerifyOnlyPreallocated> = Secp256k1{ctx: ctx_vrfy, phantom: PhantomData, size};

        let (sk, pk) = full.generate_keypair(&mut thread_rng());
        let msg = Message::from_slice(&[2u8; 32]).unwrap();
        // Try signing
        assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
        let sig = full.sign(&msg, &sk);

        // Try verifying
        assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
        assert!(full.verify(&msg, &sig, &pk).is_ok());

        drop(full);drop(sign);drop(vrfy);

        unsafe { ffi::secp256k1_context_destroy(ctx_vrfy) };
        unsafe { ffi::secp256k1_context_destroy(ctx_sign) };
        unsafe { ffi::secp256k1_context_destroy(ctx_full) };
    }

    #[test]
    fn test_raw_ctx() {
        use std::mem::ManuallyDrop;

        let ctx_full = Secp256k1::new();
        let ctx_sign = Secp256k1::signing_only();
        let ctx_vrfy = Secp256k1::verification_only();

        let mut full = unsafe {Secp256k1::from_raw_all(ctx_full.ctx)};
        let mut sign = unsafe {Secp256k1::from_raw_signining_only(ctx_sign.ctx)};
        let mut vrfy = unsafe {Secp256k1::from_raw_verification_only(ctx_vrfy.ctx)};

        let (sk, pk) = full.generate_keypair(&mut thread_rng());
        let msg = Message::from_slice(&[2u8; 32]).unwrap();
        // Try signing
        assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
        let sig = full.sign(&msg, &sk);

        // Try verifying
        assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
        assert!(full.verify(&msg, &sig, &pk).is_ok());

        unsafe {
            ManuallyDrop::drop(&mut full);
            ManuallyDrop::drop(&mut sign);
            ManuallyDrop::drop(&mut vrfy);

        }
        drop(ctx_full);
        drop(ctx_sign);
        drop(ctx_vrfy);
    }

    #[cfg(not(target_arch = "wasm32"))]
    #[test]
    #[should_panic]
    fn test_panic_raw_ctx() {
        let ctx_vrfy = Secp256k1::verification_only();
        let raw_ctx_verify_as_full = unsafe {Secp256k1::from_raw_all(ctx_vrfy.ctx)};
        let (sk, _) = raw_ctx_verify_as_full.generate_keypair(&mut thread_rng());
        let msg = Message::from_slice(&[2u8; 32]).unwrap();
        // Try signing
        raw_ctx_verify_as_full.sign(&msg, &sk);
    }

    #[test]
    fn test_preallocation() {
        let mut buf_ful = vec![AlignedType::zeroed(); Secp256k1::preallocate_size()];
        let mut buf_sign = vec![AlignedType::zeroed(); Secp256k1::preallocate_signing_size()];
        let mut buf_vfy = vec![AlignedType::zeroed(); Secp256k1::preallocate_verification_size()];

        let full = Secp256k1::preallocated_new(&mut buf_ful).unwrap();
        let sign = Secp256k1::preallocated_signing_only(&mut buf_sign).unwrap();
        let vrfy = Secp256k1::preallocated_verification_only(&mut buf_vfy).unwrap();

//        drop(buf_vfy); // The buffer can't get dropped before the context.
//        println!("{:?}", buf_ful[5]); // Can't even read the data thanks to the borrow checker.

        let (sk, pk) = full.generate_keypair(&mut thread_rng());
        let msg = Message::from_slice(&[2u8; 32]).unwrap();
        // Try signing
        assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
        let sig = full.sign(&msg, &sk);

        // Try verifying
        assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
        assert!(full.verify(&msg, &sig, &pk).is_ok());
    }

    #[test]
    fn capabilities() {
        let sign = Secp256k1::signing_only();
        let vrfy = Secp256k1::verification_only();
        let full = Secp256k1::new();

        let mut msg = [0u8; 32];
        thread_rng().fill_bytes(&mut msg);
        let msg = Message::from_slice(&msg).unwrap();

        // Try key generation
        let (sk, pk) = full.generate_keypair(&mut thread_rng());

        // Try signing
        assert_eq!(sign.sign(&msg, &sk), full.sign(&msg, &sk));
        let sig = full.sign(&msg, &sk);

        // Try verifying
        assert!(vrfy.verify(&msg, &sig, &pk).is_ok());
        assert!(full.verify(&msg, &sig, &pk).is_ok());

        // Check that we can produce keys from slices with no precomputation
        let (pk_slice, sk_slice) = (&pk.serialize(), &sk[..]);
        let new_pk = PublicKey::from_slice(pk_slice).unwrap();
        let new_sk = SecretKey::from_slice(sk_slice).unwrap();
        assert_eq!(sk, new_sk);
        assert_eq!(pk, new_pk);
    }

    #[test]
    fn signature_serialize_roundtrip() {
        let mut s = Secp256k1::new();
        s.randomize(&mut thread_rng());

        let mut msg = [0; 32];
        for _ in 0..100 {
            thread_rng().fill_bytes(&mut msg);
            let msg = Message::from_slice(&msg).unwrap();

            let (sk, _) = s.generate_keypair(&mut thread_rng());
            let sig1 = s.sign(&msg, &sk);
            let der = sig1.serialize_der();
            let sig2 = Signature::from_der(&der[..]).unwrap();
            assert_eq!(sig1, sig2);

            let compact = sig1.serialize_compact();
            let sig2 = Signature::from_compact(&compact[..]).unwrap();
            assert_eq!(sig1, sig2);

            assert!(Signature::from_compact(&der[..]).is_err());
            assert!(Signature::from_compact(&compact[0..4]).is_err());
            assert!(Signature::from_der(&compact[..]).is_err());
            assert!(Signature::from_der(&der[0..4]).is_err());
         }
    }

    #[test]
    fn signature_display() {
        let hex_str = "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45";
        let byte_str = hex!(hex_str);

        assert_eq!(
            Signature::from_der(&byte_str).expect("byte str decode"),
            Signature::from_str(&hex_str).expect("byte str decode")
        );

        let sig = Signature::from_str(&hex_str).expect("byte str decode");
        assert_eq!(&sig.to_string(), hex_str);
        assert_eq!(&format!("{:?}", sig), hex_str);

        assert!(Signature::from_str(
            "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab4"
        ).is_err());
        assert!(Signature::from_str(
            "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab"
        ).is_err());
        assert!(Signature::from_str(
            "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eabxx"
        ).is_err());
        assert!(Signature::from_str(
            "3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45\
             72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45"
        ).is_err());

        // 71 byte signature
        let hex_str = "30450221009d0bad576719d32ae76bedb34c774866673cbde3f4e12951555c9408e6ce774b02202876e7102f204f6bfee26c967c3926ce702cf97d4b010062e193f763190f6776";
        let sig = Signature::from_str(&hex_str).expect("byte str decode");
        assert_eq!(&format!("{}", sig), hex_str);
    }

    #[test]
    fn signature_lax_der() {
        macro_rules! check_lax_sig(
            ($hex:expr) => ({
                let sig = hex!($hex);
                assert!(Signature::from_der_lax(&sig[..]).is_ok());
            })
        );

        check_lax_sig!("304402204c2dd8a9b6f8d425fcd8ee9a20ac73b619906a6367eac6cb93e70375225ec0160220356878eff111ff3663d7e6bf08947f94443845e0dcc54961664d922f7660b80c");
        check_lax_sig!("304402202ea9d51c7173b1d96d331bd41b3d1b4e78e66148e64ed5992abd6ca66290321c0220628c47517e049b3e41509e9d71e480a0cdc766f8cdec265ef0017711c1b5336f");
        check_lax_sig!("3045022100bf8e050c85ffa1c313108ad8c482c4849027937916374617af3f2e9a881861c9022023f65814222cab09d5ec41032ce9c72ca96a5676020736614de7b78a4e55325a");
        check_lax_sig!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45");
        check_lax_sig!("3046022100eaa5f90483eb20224616775891397d47efa64c68b969db1dacb1c30acdfc50aa022100cf9903bbefb1c8000cf482b0aeeb5af19287af20bd794de11d82716f9bae3db1");
        check_lax_sig!("3045022047d512bc85842ac463ca3b669b62666ab8672ee60725b6c06759e476cebdc6c102210083805e93bd941770109bcc797784a71db9e48913f702c56e60b1c3e2ff379a60");
        check_lax_sig!("3044022023ee4e95151b2fbbb08a72f35babe02830d14d54bd7ed1320e4751751d1baa4802206235245254f58fd1be6ff19ca291817da76da65c2f6d81d654b5185dd86b8acf");
    }

    #[test]
    fn sign_and_verify() {
        let mut s = Secp256k1::new();
        s.randomize(&mut thread_rng());

        let mut msg = [0; 32];
        for _ in 0..100 {
            thread_rng().fill_bytes(&mut msg);
            let msg = Message::from_slice(&msg).unwrap();

            let (sk, pk) = s.generate_keypair(&mut thread_rng());
            let sig = s.sign(&msg, &sk);
            assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
            let low_r_sig = s.sign_low_r(&msg, &sk);
            assert_eq!(s.verify(&msg, &low_r_sig, &pk), Ok(()));
            let grind_r_sig = s.sign_grind_r(&msg, &sk, 1);
            assert_eq!(s.verify(&msg, &grind_r_sig, &pk), Ok(()));
            let compact = sig.serialize_compact();
            if compact[0] < 0x80 {
                assert_eq!(sig, low_r_sig);
            } else {
                #[cfg(not(fuzzing))]  // mocked sig generation doesn't produce low-R sigs
                assert_ne!(sig, low_r_sig);
            }
            #[cfg(not(fuzzing))]  // mocked sig generation doesn't produce low-R sigs
            assert!(super::compact_sig_has_zero_first_bit(&low_r_sig.0));
            #[cfg(not(fuzzing))]  // mocked sig generation doesn't produce low-R sigs
            assert!(super::der_length_check(&grind_r_sig.0, 70));
         }
    }

    #[test]
    fn sign_and_verify_extreme() {
        let mut s = Secp256k1::new();
        s.randomize(&mut thread_rng());

        // Wild keys: 1, CURVE_ORDER - 1
        // Wild msgs: 1, CURVE_ORDER - 1
        let mut wild_keys = [[0; 32]; 2];
        let mut wild_msgs = [[0; 32]; 2];

        wild_keys[0][0] = 1;
        wild_msgs[0][0] = 1;

        use constants;
        wild_keys[1][..].copy_from_slice(&constants::CURVE_ORDER[..]);
        wild_msgs[1][..].copy_from_slice(&constants::CURVE_ORDER[..]);

        wild_keys[1][0] -= 1;
        wild_msgs[1][0] -= 1;

        for key in wild_keys.iter().map(|k| SecretKey::from_slice(&k[..]).unwrap()) {
            for msg in wild_msgs.iter().map(|m| Message::from_slice(&m[..]).unwrap()) {
                let sig = s.sign(&msg, &key);
                let low_r_sig = s.sign_low_r(&msg, &key);
                let grind_r_sig = s.sign_grind_r(&msg, &key, 1);
                let pk = PublicKey::from_secret_key(&s, &key);
                assert_eq!(s.verify(&msg, &sig, &pk), Ok(()));
                assert_eq!(s.verify(&msg, &low_r_sig, &pk), Ok(()));
                assert_eq!(s.verify(&msg, &grind_r_sig, &pk), Ok(()));
            }
        }
    }

    #[test]
    fn sign_and_verify_fail() {
        let mut s = Secp256k1::new();
        s.randomize(&mut thread_rng());

        let mut msg = [0u8; 32];
        thread_rng().fill_bytes(&mut msg);
        let msg = Message::from_slice(&msg).unwrap();

        let (sk, pk) = s.generate_keypair(&mut thread_rng());

        let sig = s.sign(&msg, &sk);

        let mut msg = [0u8; 32];
        thread_rng().fill_bytes(&mut msg);
        let msg = Message::from_slice(&msg).unwrap();
        assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
    }

    #[test]
    fn test_bad_slice() {
        assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE + 1]),
                   Err(InvalidSignature));
        assert_eq!(Signature::from_der(&[0; constants::MAX_SIGNATURE_SIZE]),
                   Err(InvalidSignature));

        assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE - 1]),
                   Err(InvalidMessage));
        assert_eq!(Message::from_slice(&[0; constants::MESSAGE_SIZE + 1]),
                   Err(InvalidMessage));
        assert!(Message::from_slice(&[0; constants::MESSAGE_SIZE]).is_ok());
        assert!(Message::from_slice(&[1; constants::MESSAGE_SIZE]).is_ok());
    }

    #[test]
    #[cfg(not(fuzzing))]  // fixed sig vectors can't work with fuzz-sigs
    fn test_low_s() {
        // nb this is a transaction on testnet
        // txid 8ccc87b72d766ab3128f03176bb1c98293f2d1f85ebfaf07b82cc81ea6891fa9
        //      input number 3
        let sig = hex!("3046022100839c1fbc5304de944f697c9f4b1d01d1faeba32d751c0f7acb21ac8a0f436a72022100e89bd46bb3a5a62adc679f659b7ce876d83ee297c7a5587b2011c4fcc72eab45");
        let pk = hex!("031ee99d2b786ab3b0991325f2de8489246a6a3fdb700f6d0511b1d80cf5f4cd43");
        let msg = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d");

        let secp = Secp256k1::new();
        let mut sig = Signature::from_der(&sig[..]).unwrap();
        let pk = PublicKey::from_slice(&pk[..]).unwrap();
        let msg = Message::from_slice(&msg[..]).unwrap();

        // without normalization we expect this will fail
        assert_eq!(secp.verify(&msg, &sig, &pk), Err(IncorrectSignature));
        // after normalization it should pass
        sig.normalize_s();
        assert_eq!(secp.verify(&msg, &sig, &pk), Ok(()));
    }

    #[test]
    #[cfg(not(fuzzing))]  // fuzz-sigs have fixed size/format
    fn test_low_r() {
        let secp = Secp256k1::new();
        let msg = hex!("887d04bb1cf1b1554f1b268dfe62d13064ca67ae45348d50d1392ce2d13418ac");
        let msg = Message::from_slice(&msg).unwrap();
        let sk = SecretKey::from_str("57f0148f94d13095cfda539d0da0d1541304b678d8b36e243980aab4e1b7cead").unwrap();
        let expected_sig = hex!("047dd4d049db02b430d24c41c7925b2725bcd5a85393513bdec04b4dc363632b1054d0180094122b380f4cfa391e6296244da773173e78fc745c1b9c79f7b713");
        let expected_sig = Signature::from_compact(&expected_sig).unwrap();

        let sig = secp.sign_low_r(&msg, &sk);

        assert_eq!(expected_sig, sig);
    }

    #[test]
    #[cfg(not(fuzzing))]  // fuzz-sigs have fixed size/format
    fn test_grind_r() {
        let secp = Secp256k1::new();
        let msg = hex!("ef2d5b9a7c61865a95941d0f04285420560df7e9d76890ac1b8867b12ce43167");
        let msg = Message::from_slice(&msg).unwrap();
        let sk = SecretKey::from_str("848355d75fe1c354cf05539bb29b2015f1863065bcb6766b44d399ab95c3fa0b").unwrap();
        let expected_sig = Signature::from_str("304302202ffc447100d518c8ba643d11f3e6a83a8640488e7d2537b1954b942408be6ea3021f26e1248dd1e52160c3a38af9769d91a1a806cab5f9d508c103464d3c02d6e1").unwrap();

        let sig = secp.sign_grind_r(&msg, &sk, 2);

        assert_eq!(expected_sig, sig);
    }

    #[cfg(feature = "serde")]
    #[cfg(not(fuzzing))]  // fixed sig vectors can't work with fuzz-sigs
    #[test]
    fn test_signature_serde() {
        use serde_test::{Configure, Token, assert_tokens};

        let s = Secp256k1::new();

        let msg = Message::from_slice(&[1; 32]).unwrap();
        let sk = SecretKey::from_slice(&[2; 32]).unwrap();
        let sig = s.sign(&msg, &sk);
        static SIG_BYTES: [u8; 71] = [
            48, 69, 2, 33, 0, 157, 11, 173, 87, 103, 25, 211, 42, 231, 107, 237,
            179, 76, 119, 72, 102, 103, 60, 189, 227, 244, 225, 41, 81, 85, 92, 148,
            8, 230, 206, 119, 75, 2, 32, 40, 118, 231, 16, 47, 32, 79, 107, 254,
            226, 108, 150, 124, 57, 38, 206, 112, 44, 249, 125, 75, 1, 0, 98, 225,
            147, 247, 99, 25, 15, 103, 118
        ];
        static SIG_STR: &'static str = "\
            30450221009d0bad576719d32ae76bedb34c774866673cbde3f4e12951555c9408e6ce77\
            4b02202876e7102f204f6bfee26c967c3926ce702cf97d4b010062e193f763190f6776\
        ";

        assert_tokens(&sig.compact(), &[Token::BorrowedBytes(&SIG_BYTES[..])]);
        assert_tokens(&sig.readable(), &[Token::BorrowedStr(SIG_STR)]);
    }

    #[cfg(feature = "global-context")]
    #[test]
    fn test_global_context() {
        use super::SECP256K1;

        let sk_data = hex!("e6dd32f8761625f105c39a39f19370b3521d845a12456d60ce44debd0a362641");
        let sk = SecretKey::from_slice(&sk_data).unwrap();
        let msg_data = hex!("a4965ca63b7d8562736ceec36dfa5a11bf426eb65be8ea3f7a49ae363032da0d");
        let msg = Message::from_slice(&msg_data).unwrap();

        // Check usage as explicit parameter
        let pk = PublicKey::from_secret_key(&SECP256K1, &sk);

        // Check usage as self
        let sig = SECP256K1.sign(&msg, &sk);
        assert!(SECP256K1.verify(&msg, &sig, &pk).is_ok());
    }

    #[cfg(feature = "bitcoin_hashes")]
    #[test]
    fn test_from_hash() {
        use bitcoin_hashes;
        use bitcoin_hashes::Hash;

        let test_bytes = "Hello world!".as_bytes();

        let hash = bitcoin_hashes::sha256::Hash::hash(test_bytes);
        let msg = Message::from(hash);
        assert_eq!(msg.0, hash.into_inner());
        assert_eq!(
            msg,
            Message::from_hashed_data::<bitcoin_hashes::sha256::Hash>(test_bytes)
        );

        let hash = bitcoin_hashes::sha256d::Hash::hash(test_bytes);
        let msg = Message::from(hash);
        assert_eq!(msg.0, hash.into_inner());
        assert_eq!(
            msg,
            Message::from_hashed_data::<bitcoin_hashes::sha256d::Hash>(test_bytes)
        );
    }
}

#[cfg(all(test, feature = "unstable"))]
mod benches {
    use rand::{thread_rng, RngCore};
    use test::{Bencher, black_box};

    use super::{Secp256k1, Message};

    #[bench]
    pub fn generate(bh: &mut Bencher) {
        struct CounterRng(u64);
        impl RngCore for CounterRng {
            fn next_u32(&mut self) -> u32 {
                self.next_u64() as u32
            }

            fn next_u64(&mut self) -> u64 {
                self.0 += 1;
                self.0
            }

            fn fill_bytes(&mut self, dest: &mut [u8]) {
                for chunk in dest.chunks_mut(64/8) {
                    let rand: [u8; 64/8] = unsafe {std::mem::transmute(self.next_u64())};
                    chunk.copy_from_slice(&rand[..chunk.len()]);
                }
            }

            fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), rand::Error> {
                Ok(self.fill_bytes(dest))
            }
        }


        let s = Secp256k1::new();
        let mut r = CounterRng(0);
        bh.iter( || {
            let (sk, pk) = s.generate_keypair(&mut r);
            black_box(sk);
            black_box(pk);
        });
    }

    #[bench]
    pub fn bench_sign(bh: &mut Bencher) {
        let s = Secp256k1::new();
        let mut msg = [0u8; 32];
        thread_rng().fill_bytes(&mut msg);
        let msg = Message::from_slice(&msg).unwrap();
        let (sk, _) = s.generate_keypair(&mut thread_rng());

        bh.iter(|| {
            let sig = s.sign(&msg, &sk);
            black_box(sig);
        });
    }

    #[bench]
    pub fn bench_verify(bh: &mut Bencher) {
        let s = Secp256k1::new();
        let mut msg = [0u8; 32];
        thread_rng().fill_bytes(&mut msg);
        let msg = Message::from_slice(&msg).unwrap();
        let (sk, pk) = s.generate_keypair(&mut thread_rng());
        let sig = s.sign(&msg, &sk);

        bh.iter(|| {
            let res = s.verify(&msg, &sig, &pk).unwrap();
            black_box(res);
        });
    }
}