use core::ptr;
use key;
use super::{Secp256k1, Message, Error, Signature, Verification, Signing};
use super::ffi as super_ffi;
pub use key::SecretKey;
pub use key::PublicKey;
use self::super_ffi::CPtr;
use ffi::recovery as ffi;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct RecoveryId(i32);
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct RecoverableSignature(ffi::RecoverableSignature);
impl RecoveryId {
#[inline]
pub fn from_i32(id: i32) -> Result<RecoveryId, Error> {
match id {
0 | 1 | 2 | 3 => Ok(RecoveryId(id)),
_ => Err(Error::InvalidRecoveryId)
}
}
#[inline]
pub fn to_i32(self) -> i32 {
self.0
}
}
impl RecoverableSignature {
#[inline]
pub fn from_compact(data: &[u8], recid: RecoveryId) -> Result<RecoverableSignature, Error> {
if data.is_empty() {return Err(Error::InvalidSignature);}
let mut ret = ffi::RecoverableSignature::new();
unsafe {
if data.len() != 64 {
Err(Error::InvalidSignature)
} else if ffi::secp256k1_ecdsa_recoverable_signature_parse_compact(
super_ffi::secp256k1_context_no_precomp,
&mut ret,
data.as_c_ptr(),
recid.0,
) == 1
{
Ok(RecoverableSignature(ret))
} else {
Err(Error::InvalidSignature)
}
}
}
#[inline]
pub fn as_ptr(&self) -> *const ffi::RecoverableSignature {
&self.0
}
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut ffi::RecoverableSignature {
&mut self.0
}
#[inline]
pub fn serialize_compact(&self) -> (RecoveryId, [u8; 64]) {
let mut ret = [0u8; 64];
let mut recid = 0i32;
unsafe {
let err = ffi::secp256k1_ecdsa_recoverable_signature_serialize_compact(
super_ffi::secp256k1_context_no_precomp,
ret.as_mut_c_ptr(),
&mut recid,
self.as_c_ptr(),
);
assert!(err == 1);
}
(RecoveryId(recid), ret)
}
#[inline]
pub fn to_standard(&self) -> Signature {
unsafe {
let mut ret = super_ffi::Signature::new();
let err = ffi::secp256k1_ecdsa_recoverable_signature_convert(
super_ffi::secp256k1_context_no_precomp,
&mut ret,
self.as_c_ptr(),
);
assert!(err == 1);
Signature(ret)
}
}
}
impl CPtr for RecoverableSignature {
type Target = ffi::RecoverableSignature;
fn as_c_ptr(&self) -> *const Self::Target {
self.as_ptr()
}
fn as_mut_c_ptr(&mut self) -> *mut Self::Target {
self.as_mut_ptr()
}
}
impl From<ffi::RecoverableSignature> for RecoverableSignature {
#[inline]
fn from(sig: ffi::RecoverableSignature) -> RecoverableSignature {
RecoverableSignature(sig)
}
}
impl<C: Signing> Secp256k1<C> {
pub fn sign_recoverable(&self, msg: &Message, sk: &key::SecretKey)
-> RecoverableSignature {
let mut ret = ffi::RecoverableSignature::new();
unsafe {
assert_eq!(
ffi::secp256k1_ecdsa_sign_recoverable(
self.ctx,
&mut ret,
msg.as_c_ptr(),
sk.as_c_ptr(),
super_ffi::secp256k1_nonce_function_rfc6979,
ptr::null()
),
1
);
}
RecoverableSignature::from(ret)
}
}
impl<C: Verification> Secp256k1<C> {
pub fn recover(&self, msg: &Message, sig: &RecoverableSignature)
-> Result<key::PublicKey, Error> {
unsafe {
let mut pk = super_ffi::PublicKey::new();
if ffi::secp256k1_ecdsa_recover(self.ctx, &mut pk,
sig.as_c_ptr(), msg.as_c_ptr()) != 1 {
return Err(Error::InvalidSignature);
}
Ok(key::PublicKey::from(pk))
}
}
}
#[cfg(test)]
mod tests {
use rand::{RngCore, thread_rng};
use key::SecretKey;
use super::{RecoveryId, RecoverableSignature};
use super::super::{Secp256k1, Message};
use super::super::Error::{IncorrectSignature, InvalidSignature};
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
fn capabilities() {
let sign = Secp256k1::signing_only();
let vrfy = Secp256k1::verification_only();
let full = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = full.generate_keypair(&mut thread_rng());
assert_eq!(sign.sign_recoverable(&msg, &sk), full.sign_recoverable(&msg, &sk));
let sigr = full.sign_recoverable(&msg, &sk);
assert!(vrfy.recover(&msg, &sigr).is_ok());
assert!(full.recover(&msg, &sigr).is_ok());
assert_eq!(vrfy.recover(&msg, &sigr),
full.recover(&msg, &sigr));
assert_eq!(full.recover(&msg, &sigr), Ok(pk));
}
#[test]
fn recid_sanity_check() {
let one = RecoveryId(1);
assert_eq!(one, one.clone());
}
#[test]
#[cfg(not(fuzzing))]
fn sign() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let one = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1];
let sk = SecretKey::from_slice(&one).unwrap();
let msg = Message::from_slice(&one).unwrap();
let sig = s.sign_recoverable(&msg, &sk);
assert_eq!(Ok(sig), RecoverableSignature::from_compact(&[
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
RecoveryId(1)))
}
#[test]
fn sign_and_verify_fail() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
let sigr = s.sign_recoverable(&msg, &sk);
let sig = sigr.to_standard();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
assert_eq!(s.verify(&msg, &sig, &pk), Err(IncorrectSignature));
let recovered_key = s.recover(&msg, &sigr).unwrap();
assert!(recovered_key != pk);
}
#[test]
fn sign_with_recovery() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
let sig = s.sign_recoverable(&msg, &sk);
assert_eq!(s.recover(&msg, &sig), Ok(pk));
}
#[test]
fn bad_recovery() {
let mut s = Secp256k1::new();
s.randomize(&mut thread_rng());
let msg = Message::from_slice(&[0x55; 32]).unwrap();
let sig = RecoverableSignature::from_compact(&[0; 64], RecoveryId(0)).unwrap();
assert_eq!(s.recover(&msg, &sig), Err(InvalidSignature));
let sig = RecoverableSignature::from_compact(&[1; 64], RecoveryId(0)).unwrap();
assert!(s.recover(&msg, &sig).is_ok());
}
#[test]
fn test_debug_output() {
let sig = RecoverableSignature::from_compact(&[
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89],
RecoveryId(1)).unwrap();
assert_eq!(&format!("{:?}", sig), "RecoverableSignature(98882e09f4ed6dc3659e43fc771e0cafa60b1f926f2b77041f744721adff7366898cb609d0ee128d06ae9aa3c48020ff9f705e02f80e1280a8ade05216971a4c01)");
}
#[test]
fn test_recov_sig_serialize_compact() {
let recid_in = RecoveryId(1);
let bytes_in = &[
0x66, 0x73, 0xff, 0xad, 0x21, 0x47, 0x74, 0x1f,
0x04, 0x77, 0x2b, 0x6f, 0x92, 0x1f, 0x0b, 0xa6,
0xaf, 0x0c, 0x1e, 0x77, 0xfc, 0x43, 0x9e, 0x65,
0xc3, 0x6d, 0xed, 0xf4, 0x09, 0x2e, 0x88, 0x98,
0x4c, 0x1a, 0x97, 0x16, 0x52, 0xe0, 0xad, 0xa8,
0x80, 0x12, 0x0e, 0xf8, 0x02, 0x5e, 0x70, 0x9f,
0xff, 0x20, 0x80, 0xc4, 0xa3, 0x9a, 0xae, 0x06,
0x8d, 0x12, 0xee, 0xd0, 0x09, 0xb6, 0x8c, 0x89];
let sig = RecoverableSignature::from_compact(
bytes_in,
recid_in,
).unwrap();
let (recid_out, bytes_out) = sig.serialize_compact();
assert_eq!(recid_in, recid_out);
assert_eq!(&bytes_in[..], &bytes_out[..]);
}
#[test]
fn test_recov_id_conversion_between_i32() {
assert!(RecoveryId::from_i32(-1).is_err());
assert!(RecoveryId::from_i32(0).is_ok());
assert!(RecoveryId::from_i32(1).is_ok());
assert!(RecoveryId::from_i32(2).is_ok());
assert!(RecoveryId::from_i32(3).is_ok());
assert!(RecoveryId::from_i32(4).is_err());
let id0 = RecoveryId::from_i32(0).unwrap();
assert_eq!(id0.to_i32(), 0);
let id1 = RecoveryId(1);
assert_eq!(id1.to_i32(), 1);
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::{thread_rng, RngCore};
use test::{Bencher, black_box};
use super::{Message, Secp256k1};
#[bench]
pub fn bench_recover(bh: &mut Bencher) {
let s = Secp256k1::new();
let mut msg = [0u8; 32];
thread_rng().fill_bytes(&mut msg);
let msg = Message::from_slice(&msg).unwrap();
let (sk, _) = s.generate_keypair(&mut thread_rng());
let sig = s.sign_recoverable(&msg, &sk);
bh.iter(|| {
let res = s.recover(&msg, &sig).unwrap();
black_box(res);
});
}
}